NOTE ON PALEY-WIENER'S THEOREM

By Fu Traing Wang

1. Paley and Wiener proved the following theorem [1;75].

Let $f(z)$ be an even entire function of order not exceeding 1 and let the number of its roots $\pm z_{n}$ within a circle radius r about the origin be $2 \lambda(r)$. Let

$$
\begin{equation*}
\lambda(r) \sim B r \tag{1}
\end{equation*}
$$

then all the roots of $f(z)$ will be real, when and only when

$$
B=-\frac{1}{\pi^{2}} \int_{-\infty}^{\infty} \frac{\log |f(x)|}{x^{2}} d x
$$

The object of this note is to prove the following extension: if we replace the condition (1) of Paley-Wiener's result by

$$
\begin{equation*}
\lambda(r)=A r \log r+B r+o(r) \tag{2}
\end{equation*}
$$

as $r \rightarrow \infty$, then all roots of $f(z)$ will be real, when and only when

$$
-\frac{2}{\pi^{2}} \int_{0}^{T} \frac{\log |f(x)|}{x^{2}} d x=A \log T+B+o(1)
$$

as $T \rightarrow \infty$.
In order to prove this result, let us write

$$
\phi(z)=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{\lambda_{n}^{2}}\right)
$$

where $\lambda_{n}=\left|z_{n}\right|$. By Paley-Wiener's method we have only to show that

$$
-\frac{2}{\pi^{2}} \int_{0}^{T} \frac{\log |\phi(x)|}{x^{2}} d x=A \log T+B+o(1)
$$

as $T \rightarrow \infty$.
Put

$$
N(t)=\frac{1}{t} \int_{0}^{1 / t} x^{-2} \log \left|1-x^{2}\right| d x=-\log \left|1-t^{-2}\right|-t^{-1} \log \left|\frac{1+t}{1-t}\right|
$$

then we have

$$
N^{\prime}(t)=t^{-2} \log \left|\frac{1+t}{1-t}\right|,
$$

Received May 29, 1947.

