THE SINGULAR ELEMENTS OF A BANACH ALGEBRA

By C. E. RICKART

1. Introduction. A Banach algebra, or simply B-algebra, is a linear algebra (not necessarily commutative) in which the underlying vector space is a complex Banach space. The norm of the Banach space is related to multiplication by the condition $||xy|| \leq ||x|| \cdot ||y||$. The existence of an identity element e, with ||e|| = 1, will also be assumed. Banach algebras are also called normed rings [4].

We outline first a few properties of a commutative *B*-algebra \mathfrak{A} which were obtained by I. Gelfand [4]. Let \mathfrak{M} denote the class of all non-trivial maximal ideals in \mathfrak{A} . Then each $M \mathfrak{e} \mathfrak{M}$ determines a homomorphism x(M) of \mathfrak{A} onto the complex numbers. The kernel of the homomorphism is M; that is, M consists of all x such that x(M) = 0. The class \mathfrak{M} can be topologized so that it becomes a bicompact topological space on which x(M) is a continuous function of M for each $x \mathfrak{e} \mathfrak{A}$. Also, max $|x(M)| = \lim ||x^n||^{1/n}$, for every x. In general, max $|x(M)| \leq ||x||$. However, if $||x^2|| = ||x||^2$ in \mathfrak{A} , then max |x(M)| = ||x|| and convergence in \mathfrak{A} is equivalent to uniform convergence of the associated functions on \mathfrak{M} .

Two *B*-algebras are said to be *equivalent* provided there exists a one-to-one correspondence between them which preserves the norm as well as the algebraic operations. A subalgebra α' of a *B*-algebra α , with the same identity element as α , is called a *B*-subalgebra of α provided it is topologically closed in α . On the other hand, a *B*-algebra α' is called a *B*-extension of α provided α is equivalent to a *B*-subalgebra of α' . In this case α is also said to be embedded in α' .

An element of a *B*-algebra α is said to be *left (right) regular* provided it possesses a left (right) inverse in α . If x is both left and right regular, then it possesses a unique inverse and is said to be *regular*. The class of all (left, right) regular elements is denoted by $(G^i, G^r) G$. The class G is a group under multiplication and is an open subset of α . In particular, if || e - x || < 1, then $x \in G$ [4]. The component G_{\bullet} of the open set G, which contains the identity element e, is called the *principal component* of G and is also a group [9]. An element which is not (left, right) regular is said to be (*left, right) singular*. The class of all (left, right) singular elements is denoted by $(S^i, S^r)S$. If S consists of only the zero element, then α reduces to the complex numbers [4]. If x is singular in every *B*-extension of α , then x is said to be *permanently singular*.

The set $\sigma(x)$ of all complex numbers λ such that $x - \lambda e$ is singular is called the spectrum of x. The spectrum of x is a bounded, closed subset of the complex plane; in fact, if $\lambda \in \sigma(x)$, then $|\lambda| \leq ||x||$. If $x - \lambda e$ is permanently singular,

Received April 5, 1947; in revised form June 19, 1947.