CAUCHY PRODUCTS OF DIVISOR FUNCTIONS IN $G F\left[p^{n}, x\right]$

By L. Carlitz and Eckford Cohen

1. Introduction. Let $G F\left[p^{n}, x\right]$ denote the ring of polynomials in an indeterminate x with coefficients in the Galois field $G F\left(p^{n}\right)$. In this paper capital italics will denote polynomials in $G F\left[p^{n}, x\right]$ unless otherwise stated. By sgn A will be meant the coefficient of the highest power of x in A; if $\operatorname{sgn} A=1$, A is called primary.

A single-valued function $\phi(A)$ defined for all $A \varepsilon G F\left[p^{n}, x\right]$ will be called arithmetic; the values $\phi(A)$ are assumed to be complex numbers. Let ϕ and ψ be given arithmetic functions and F a given polynomial of degree f. Then we consider three types of composition, which will be referred to as Cauchy products C_{1}, C_{2}, C_{3} :

$$
\begin{equation*}
C_{i}: \phi \cdot \psi \equiv \sum_{i} \phi(A) \psi(B)=\zeta(F) \quad(i=1,2,3) \tag{1.1}
\end{equation*}
$$

In each case the summation is over polynomials A, B such that $A+B=F$, with the following restrictions:

Let r denote a fixed non-negative integer and α and β fixed non-zero elements of $G F\left(p^{n}\right)$, where $\alpha+\beta=\operatorname{sgn} F$ if $f=r$ and $\alpha+\beta=0, \operatorname{sgn} F$ arbitrary if $f<r$. Then under C_{1}, A and B range over polynomials of degree r with sgn $A=\alpha, \operatorname{sgn} B=\beta$ and $A+B=F$. Under C_{2}, F is assumed $\neq 0$, of degree r, and the summation in (1.1) is over A of degree r and B of degree less than r such that $A+B=F$. Under C_{3}, F is assumed to be of degree less than r, and A and B range over polynomials of degree less than r such that $A+B=$ F. By \sum_{i} we shall mean a summation corresponding to $C_{i}(i=1,2,3)$; a symbol such as $\sum_{2,3}$ will be used to indicate summations with respect to either C_{2} or C_{3}.

The Cauchy products just defined are evidently analogous to the ordinary Cauchy product (see, for example, E. T. Bell [1]). However, as we shall see, there are important differences; in particular, in the polynomial case zero divisors occur-that is, $\zeta(F)$ in (1.1) may be identically zero, even though neither ϕ nor ψ is zero. For other properties see the end of $\S \S 2,5$.

In this paper we consider only a special class of arithmetic functions which we shall call divisor functions and which we shall now define. We first introduce certain notation to be used throughout the paper. If M denotes a polynomial in $G F\left[p^{n}, x\right]$, we define as in [2]:

$$
\delta_{z}(M)=\left\{\begin{array}{cc}
\sum_{Z \mid M}^{\operatorname{deg} Z=z} 1 & (z \geq 0) \tag{1.2}\\
0 & (z<0)
\end{array}\right.
$$

Received June 20, 1947.

