THE INTEGRAL TRANSFORMS WITH ITERATED LAPLACE KERNELS

By Harry Pollard

1. Introduction. The successive iterates of the Laplace kernel $G_{0}(x, y)=$ $e^{-x y}$ are defined by the recursion formula

$$
\begin{equation*}
G_{n}(x, y)=\int_{0}^{\infty} e^{-x t} G_{n-1}(t, y) d y \quad(n=1,2, \cdots) \tag{1.1}
\end{equation*}
$$

These iterates fall into two classes, depending on the parity of n : the kernels $H_{n}(x, y)=G_{2 n-1}(x, y)$ are homogeneous of degree -1 , while the kernels $K_{n}(x, y)=G_{2 n}(x, y)$ are functions of $x y$.

Recently the author [3] has obtained a solution of the inversion problem for the transforms

$$
f(x)=\int_{0+}^{\infty} H_{n}(x, y) d \alpha(y)
$$

where $\alpha(y)$ is of bounded variation in every finite interval on the positive axis. In the present paper we shall treat the analogous problem for the transforms

$$
\begin{equation*}
f(x)=\int_{0+}^{\infty} K_{n}(x, y) d \alpha(y) . \tag{1.2}
\end{equation*}
$$

The case $n=0$ proves to be exceptional in some ways, so that we restrict ourselves to $n=1,2, \cdots$; in any event, for $n=0$ the transform reduces to the classical Laplace integral, for which the inversion theory is well known [6]. If $\alpha(y)$ is of the form $\int_{0}^{y} \varphi(u) d u$, where $\varphi(u) \varepsilon L^{2}(0, \infty)$, then an inversion formula for the transforms (1.2) is known [2]; our present methods require no restriction on $\alpha(y)$ beyond the convergence of the integral (1.2).

It is first necessary to obtain a certain amount of information concerning the behavior of the kernels $K_{n}(x, y)$. Widder [5] has studied this problem in the real domain, but our methods call for information in the complex domain also. This is a more awkward problem than the analogous one for the kernels $H_{n}(x, y)$. In the latter case simple explicit formulas for the kernels exist in terms of the elementary functions or of the gamma function [3], [5]. For the kernels $K_{n}(x, y)$ nothing so simple is available, and we must be content with asymptotic approximations.

Since $K_{n}(x, y)$ is a function of $x y$ we may write it in the form $K_{n}(x y)$, where $K_{n}(x)=K_{n}(x, 1)$. The function $K_{n}(z), z=x+i y$, turns out to be an entire function of $\log z$. This makes the entire function $h_{n}(z)=K_{n}\left(e^{z}\right)$ the more natural to study directly. This is done in $\S 2$, where for the sake of completeness we prove somewhat more than is necessary for the present paper.

Received April 14, 1947.

