FOURIER-WIENER TRANSFORMS OF FUNCTIONALS BELONGING TO L_{2} OVER THE SPACE C

By R. H. Cameron and W. T. Martin

1. Introduction. In this note we shall show that every real or complex-valued functional $F(x)$ which belongs to $L_{2}(C)$,

$$
\begin{equation*}
\int_{C}^{w}|F(x)|^{2} d_{w} x<\infty, \tag{1.1}
\end{equation*}
$$

has a Fourier-Wiener transform $G(x)$ which also belongs to $L_{2}(C)$ and whose transform is $F(-x)$. Moreover, we shall show that F and G satisfy Plancherel's relation in the form

$$
\begin{equation*}
\int_{C}^{w}|F(x)|^{2} d_{w} x=\int_{C}^{w}|G(y)|^{2} d_{w} y . \tag{1.2}
\end{equation*}
$$

We first define the Fourier-Wiener transform for functionals belonging to a subclass E_{m} of $L_{2}(C)$ and then we show that these functionals are dense in $L_{2}(C)$. The class E_{m} is a class previously considered [1]; the definition of the Fourier-Wiener transform used here will differ slightly from that used in [1] and [2].

In showing that the functionals of E_{m} are dense in $L_{2}(C)$ we will use the Fourier-Hermite development considered in [3]. The desirability of having Plancherel's relation in the form (1.2) rather than in the form given earlier [1; (1.2)] led us to adopt the modified definition of the transform which we use here.

Throughout this note C will denote the space of real-valued continuous functions defined on $0 \leq t \leq 1$ which vanish at $t=0$, and the measure used on C shall be that defined by Wiener (see [6], where references to his earlier papers are also given). The space $L_{2}(C)$ will consist of all real or complex-valued W-measurable functionals $F(x)$ satisfying (1.1) In the process of proving the main result on transforms of functionals of $L_{2}(C)$, we will use functionals defined throughout the space K of complex-valued continuous functions defined in $0 \leq t \leq 1$ which vanish at $t=0$; but we emphasize that for the result itself the functionals need not be defined over K but only almost everywhere over C.
2. Fourier-Wiener transforms of functionals of class E_{m}. As in [1] we consider the class E_{m} of functionals $F(x)$ which are defined throughout the space K and which are mean continuous, "entire", and of mean exponential type. That is, E_{m} is the class of functionals satisfying the following three conditions:
1°

$$
\lim _{n \rightarrow \infty} F\left[x^{(n)}\right]=F[x]
$$

Received September 14, 1946.

