FOURIER-WIENER TRANSFORMS OF FUNCTIONALS BELONGING TO L_2 OVER THE SPACE C

By R. H. CAMERON AND W. T. MARTIN

1. Introduction. In this note we shall show that every real or complex-valued functional F(x) which belongs to $L_2(C)$,

(1.1)
$$\int_{c}^{w} |F(x)|^{2} d_{w}x < \infty,$$

has a Fourier-Wiener transform G(x) which also belongs to $L_2(C)$ and whose transform is F(-x). Moreover, we shall show that F and G satisfy Plancherel's relation in the form

(1.2)
$$\int_{c}^{w} |F(x)|^{2} d_{w}x = \int_{c}^{w} |G(y)|^{2} d_{w}y.$$

We first define the Fourier-Wiener transform for functionals belonging to a subclass E_m of $L_2(C)$ and then we show that these functionals are dense in $L_2(C)$. The class E_m is a class previously considered [1]; the definition of the Fourier-Wiener transform used here will differ slightly from that used in [1] and [2].

In showing that the functionals of E_m are dense in $L_2(C)$ we will use the Fourier-Hermite development considered in [3]. The desirability of having Plancherel's relation in the form (1.2) rather than in the form given earlier [1; (1.2)] led us to adopt the modified definition of the transform which we use here.

Throughout this note C will denote the space of real-valued continuous functions defined on $0 \le t \le 1$ which vanish at t = 0, and the measure used on Cshall be that defined by Wiener (see [6], where references to his earlier papers are also given). The space $L_2(C)$ will consist of all real or complex-valued W-measurable functionals F(x) satisfying (1.1) In the process of proving the main result on transforms of functionals of $L_2(C)$, we will use functionals defined throughout the space K of complex-valued continuous functions defined in $0 \le t \le 1$ which vanish at t = 0; but we emphasize that for the result itself the functionals need not be defined over K but only almost everywhere over C.

2. Fourier-Wiener transforms of functionals of class E_m . As in [1] we consider the class E_m of functionals F(x) which are defined throughout the space K and which are mean continuous, "entire", and of mean exponential type. That is, E_m is the class of functionals satisfying the following three conditions:

1°
$$\lim_{n \to \infty} F[x^{(n)}] = F[x]$$

Received September 14, 1946.