A NOTE ON THE NUMBER THEORY OF QUATERNIONS

By Ivan Niven

1. We prove the following result.

Theorem. Every Hurwitz integral quaternion is expressible as a sum of three squares of (Hurwitz) integral quaternions. A Lipschitz integral quaternion is expressible as a sum of three squares of (Lipschitz) integral quaternions if and only if it has the form

$$
a+2 b i+2 c j+2 d k
$$

Rational integers are denoted by italic type.
These results are best possible; for example, we shall show that $6+2 i$ is not a sum of two squares of integral quaternions in either the Hurwitz or Lipschitz sense.
2. The Lipschitz case. We prove that any quaternion $a+2 b i+2 c j+2 d i j$, which we shall write as ($a, 2 b, 2 c, 2 d$), is expressible as a sum of three squares of quaternions (x, y, z, w). This can be done by observing that

$$
(a, 2 b, 2 c, 2 d)=(1, b, c, d)^{2}+(u, 0,0,0)^{2}+(0, r, s, t)^{2}
$$

is equivalent to the equation

$$
a=1-b^{2}-c^{2}-d^{2}+u^{2}-r^{2}-s^{2}-t^{2} .
$$

Integers u, r, s, t can be chosen to satisfy this equation for any values a, b, c, d.
Conversely it is clear that (a, b, c, d) is not a sum of squares if any one of b, c, d is odd.
3. The Hurwitz case. Since the Hurwitz integral domain contains the Lipschitz integral domain, we need merely treat integers of the forms

$$
\left(\frac{a_{1}}{2}, \frac{a_{2}}{2}, \frac{a_{3}}{2}, \frac{a_{4}}{2}\right)
$$

with $a_{1}, a_{2}, a_{3}, a_{4}$ odd, and ($a_{1}, a_{2}, a_{3}, a_{4}$) with at least one of a_{2}, a_{3}, a_{4} odd.
The first of these cases can be handled in the manner of the last section, that is, by the equation

$$
\left(\frac{a_{1}}{2}, \frac{a_{2}}{2}, \frac{a_{3}}{2}, \frac{a_{4}}{2}\right)=\left(\frac{1}{2}, \frac{a_{2}}{2}, \frac{a_{3}}{2}, \frac{a_{4}}{2}\right)^{2}+(u, 0,0,0)^{2}+(0, r, s, t)^{2}
$$

Received June 14, 1946.

