LIMITS FOR THE CHARACTERISTIC ROOTS OF A MATRIX

By Alfred Brauer

Let $A = (a_{\kappa\lambda})$ be an arbitrary *n*-square matrix, and *g* the maximum of the absolute values of the elements $a_{\kappa\lambda}$. It was proved by A. Hirsch [6] that each characteristic root ω_r of A satisfies the inequality

(1)
$$|\omega_{\nu}| \leq ng.$$

Another proof of this inequality was given by Bromwich [1]. I. Schur [11] proved the sharper result

(2)
$$\sum_{\nu=1}^{n} |\omega_{\nu}|^{2} \leq \sum_{\kappa,\lambda=1}^{n} |a_{\kappa\lambda}|^{2}.$$

It follows from (2) that equality holds in (1) only if

(3)
$$a_{\kappa\lambda} = a e^{i(\varphi + \varphi_{\kappa} - \varphi_{\lambda})},$$

where φ , φ_1 , φ_2 , \cdots , φ_n are arbitrary real numbers.

Denote the sum of the absolute values of the elements in the κ -th row by R_{κ} , the sum of the absolute values of the elements in the λ -th column by T_{λ} , and the maxima of the R_{κ} and of the T_{λ} by R and T, respectively. Frobenius [5] proved that

$$(4) \qquad |\omega_{\nu}| \leq \min(R, T)$$

if all the elements $a_{\kappa\lambda}$ are positive. It was shown by E. T. Browne [2] that

$$|\omega_{\nu}| \leq \frac{1}{2}(R+T)$$

if the elements $a_{\kappa\lambda}$ are arbitrary real or complex numbers.

Let S_{ρ} be the sum of the absolute values of the elements in the ρ -th row and the absolute values of the elements in the ρ -th column, and S be the maximum of the S_{ρ} . W. V. Parker [8] obtained

$$(6) \qquad \qquad |\omega_{\nu}| \leq \frac{1}{2}S$$

which is in general better than (5). Since the geometric mean is not greater than the arithmetic mean, the following result of A. B. Farnell [6] is sharper than (5)

(7)
$$|\omega_{\nu}| \leq (RT)^{\frac{1}{2}}.$$

Moreover, Farnell proved that

(8)
$$|\omega_{\nu}| \leq \left[\sum_{r=1}^{n} \left(U_{r} V_{r}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}},$$

Received April 23, 1946.