LIMITS FOR THE CHARACTERISTIC ROOTS OF A MATRIX

By Alfred Brauer

Let $A=\left(a_{k \lambda}\right)$ be an arbitrary n-square matrix, and g the maximum of the absolute values of the elements $a_{\kappa \lambda}$. It was proved by A. Hirsch [6] that each characteristic root ω_{ν} of A satisfies the inequality

$$
\begin{equation*}
\left|\omega_{\nu}\right| \leq n g \tag{1}
\end{equation*}
$$

Another proof of this inequality was given by Bromwich [1]. I. Schur [11] proved the sharper result

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|\omega_{\nu}\right|^{2} \leq \sum_{\kappa, \lambda=1}^{n}\left|a_{\kappa \lambda}\right|^{2} . \tag{2}
\end{equation*}
$$

It follows from (2) that equality holds in (1) only if

$$
\begin{equation*}
a_{k \lambda}=a e^{i\left(\varphi+\varphi_{k}-\varphi \lambda\right)}, \tag{3}
\end{equation*}
$$

where $\varphi, \varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ are arbitrary real numbers.
Denote the sum of the absolute values of the elements in the κ-th row by R_{κ}, the sum of the absolute values of the elements in the λ-th column by T_{λ}, and the maxima of the R_{κ} and of the T_{λ} by R and T, respectively. Frobenius [5] proved that

$$
\begin{equation*}
\left|\omega_{\nu}\right| \leq \min (R, T) \tag{4}
\end{equation*}
$$

if all the elements ${ }^{\prime}{ }_{\mathrm{k} \lambda}$ are positive. It was shown by E. T. Browne [2] that

$$
\begin{equation*}
\left|\omega_{\nu}\right| \leq \frac{1}{2}(R+T) \tag{5}
\end{equation*}
$$

if the elements $a_{\kappa \lambda}$ are arbitrary real or complex numbers.
Let S_{ρ} be the sum of the absolute values of the elements in the ρ-th row and the absolute values of the elements in the ρ-th column, and S be the maximum of the S_{ρ}. W. V. Parker [8] obtained

$$
\begin{equation*}
\left|\omega_{\nu}\right| \leq \frac{1}{2} S \tag{6}
\end{equation*}
$$

which is in general better than (5). Since the geometric mean is not greater than the arithmetic mean, the following result of A. B. Farnell [6] is sharper than (5)

$$
\begin{equation*}
\left|\omega_{\nu}\right| \leq(R T)^{\frac{1}{2}} . \tag{7}
\end{equation*}
$$

Moreover, Farnell proved that

$$
\begin{equation*}
\left|\omega_{\nu}\right| \leq\left[\sum_{r=1}^{n}\left(U_{r} V_{r}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

Received April 23, 1946.

