## MAXIMAL IDEMPOTENT SETS IN A RING WITH UNIT

## By Alfred L. Foster

1. Introduction. The present paper is concerned with (1) a certain extension to general rings (with unit) of results on idempotent ring subsystems previously obtained for commutative rings [1] (see also Theorems A and B below), and with (2) applications of this extension to interesting classes of full matrix rings in which the matrix elements variously belong to (a) a field, (b) certain domains of integrity, including the ring of whole numbers, (c) certain non-domains of integrity, including W/(m), the ring of whole number residues mod m.

The background of the paper, as in [1], is that of the general ring duality theory initiated in [4] and extended in [1], [3], and [2],—a duality theory for rings which embraces the familiar Boolean duality. To insure proper orientation we shall very briefly recall a few of the basic notions of this theory. (In [4] the ring duality theory was presented and applied only to commutative rings (with unit). The basic ideas of [4], however, including the portions here reviewed, do not require this commutativity, as shown in the latter part of [1]; in fact it is there shown that the duality theory (or better theories) is properly a part of a general transformation theory, and applies to algebras of the most general kind.)

Let  $R = (R, +, \times)$  be a ring with unit. The concepts and theorems of R may be arranged in *dual pairs*. In particular 0 and 1 are dual elements, and each of the pairs of operations  $+, \oplus; -, \odot; \times, \otimes; *$ ; consists of dual operations (the last being self-dual), where

| (dual addition)                              | $a \oplus b = a + b - 1$  |
|----------------------------------------------|---------------------------|
| (dual subtraction)                           | $a \ominus b = a - b + 1$ |
| (dual product, also called Logical ring sum) | $a\otimes b=a+b-ab$       |
| (ring complement).                           | $a^* = 1 - a$             |

More generally, if  $\varphi(x, y, \cdots)$  is any operation (function) of one or more *R*-variables  $x, y, \cdots$  mapping *R* onto (all or part of) itself, the dual or *transform* (see [1]) of  $\varphi$  is given by

$$dl \varphi(x, y, \cdots) = \varphi^*(x^*, y^*, \cdots).$$

Specialized to the above set of operations, one has the following restricted form of the

Received February 15, 1946.