MAXIMAL IDEMPOTENT SETS IN A RING WITH UNIT

By Alfred L. Foster

1. Introduction. The present paper is concerned with (1) a certain extension to general rings (with unit) of results on idempotent ring subsystems previously obtained for commutative rings [1] (see also Theorems A and B below), and with (2) applications of this extension to interesting classes of full matrix rings in which the matrix elements variously belong to (a) a field, (b) certain domains of integrity, including the ring of whole numbers, (c) certain non-domains of integrity, including $W /(m)$, the ring of whole number residues $\bmod m$.

The background of the paper, as in [1], is that of the general ring duality theory initiated in [4] and extended in [1], [3], and [2],-a duality theory for rings which embraces the familiar Boolean duality. To insure proper orientation we shall very briefly recall a few of the basic notions of this theory. (In [4] the ring duality theory was presented and applied only to commutative rings (with unit). The basic ideas of [4], however, including the portions here reviewed, do not require this commutativity, as shown in the latter part of [1]; in fact it is there shown that the duality theory (or better theories) is properly a part of a general transformation theory, and applies to algebras of the most general kind.)

Let $R=(R,+, \times)$ be a ring with unit. The concepts and theorems of R may be arranged in dual pairs. In particular 0 and 1 are dual elements, and each of the pairs of operations,$+ \oplus ;-, \ominus ; \times, \otimes ;{ }^{*}$; consists of dual operations (the last being self-dual), where

$$
\begin{array}{rlr}
a \oplus b & =a+b-1 & \text { (dual addition) } \\
a \ominus b & =a-b+1 & \text { (dual subtraction) } \\
a \otimes b & =a+b-a b & \text { (dual product, also called Logical ring sum) } \\
a^{*} & =1-a & \text { (ring complement). }
\end{array}
$$

More generally, if $\varphi(x, y, \cdots)$ is any operation (function) of one or more R variables x, y, \cdots mapping R onto (all or part of) itself, the dual or transform (see [1]) of φ is given by

$$
d l \varphi(x, y, \cdots)=\varphi^{*}\left(x^{*}, y^{*}, \cdots\right)
$$

Specialized to the above set of operations, one has the following restricted form of the

Received February 15, 1946.

