INEQUALITIES FOR FOURIER TRANSFORMS OF POSITIVE FUNCTIONS

By R. P. Boas, Jr., and M. Kac

1. Let $f(x)$ be the Fourier transform of a non-negative integrable function $\varphi(t)$, so that

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} e^{i x t} \varphi(t) d t \tag{1.1}
\end{equation*}
$$

Then we evidently have $|f(x)| \leq f(0)$ for all real x. If in addition $f(x)$ vanishes for $|x| \geq 1$, we are going to show that

$$
\begin{equation*}
\left|f\left(\frac{1}{2}\right)\right| \leq \frac{1}{2} f(0) \tag{1.2}
\end{equation*}
$$

more generally that

$$
\begin{equation*}
|f(1 / n)| \leq f(0) \cos \pi /(n+1) \quad(n=2,3, \cdots) \tag{1.3}
\end{equation*}
$$

and still more generally that

$$
\begin{equation*}
|f(x)| \leq f(0) \cos \frac{\pi}{[1 / x]+1} \tag{1.4}
\end{equation*}
$$

(where $[t]$ denotes the greatest integer not exceeding t).
These inequalities are best possible. For (1.2) we can see this immediately, since $\varphi(t)=2 \pi^{-1} t^{-2} \sin ^{2} \frac{1}{2} t$ gives

$$
f(x)=\left\{\begin{aligned}
1-|x|, & |x|<1 \\
0, & |x|>1
\end{aligned}\right.
$$

and there is equality in (1.2). It is more difficult to exhibit examples for which equality occurs in (1.3) and (1.4); this will be done in $\S 4$.

These inequalities are (as we discovered after proving them) analogues of inequalities for the coefficients of positive trigonometric polynomials which have been established by Fejer [4], Egerváry and Szász [3], and others. In the form in which we have stated them, our results do not include the analogous inequalities for trigonometric polynomials, but it is easy to put them into a more general form of which the inequalities for trigonometric polynomials are special cases (see Theorems 3 and 4).
In §2 we collect a number of known lemmas on determinants; in §3 we prove (1.4) by what seems to be the most natural method; in $\S 4$ we show that our inequalities are best possible.
The construction used in §4 was inspired by a formal attack on (1.4) suggested
Received September 17, 1944.

