SOME APPLICATIONS OF THE FOURIER INTEGRAL TO GENERALIZED TRIGONOMETRIC SERIES

By Richard Bellman

1. Introduction. The present paper evolved out of an attempt to prove a theorem of Ingham [2;374], a "high indices" theorem for Dirichlet series which is the following

Theorem 1 (Ingham). Suppose that the Dirichlet series

$$
\begin{equation*}
f(u)=f(s+i t)=\sum_{1}^{\infty} a_{k} e^{-l_{k u}} \tag{1.1}
\end{equation*}
$$

and the function $f(u)$ defined by it satisfy the following conditions:
(1) $l_{n}-l_{n-1} \geq 2 d>0$;
(2) the series is convergent for $s>0$;
(3) for some fixed $T>\pi / 2 d$, the mean value

$$
\frac{1}{2 T} \int_{-T}^{T}|f(s+i t)|^{2} d t
$$

is bounded for $s \rightarrow+0$;
(4) $f(u)$ is regular at $s=0$, or $(f(u)-f(0)) / u($ suitably defined on $s=0)$ is continutous in the region $s \geq 0,-T \leq t \leq T$ for some $T>0$.
Then $\sum_{1}^{\infty} a_{n}$ converges to the sum $f(0)$.
This theorem constitutes simultaneously a generalization to and analogue for Dirichlet series of theorems of Fatou and M. Riesz on power series, and a theorem of Hardy-Littlewood, sometimes called the "high indices" theorem. The main difficulty of the theorem lies in proving that conditions (1), (2), (3) involve $a_{n}=o(1)$ as $n \rightarrow \infty$. We shall concern ourselves in the first section with deriving conditions ensuring this or the equally potent $a_{n}=O(1)$ as $n \rightarrow \infty$. We refer to Ingham's paper for the convergence proofs. We shall use the theory of Fourier integrals to derive in place of (3) a condition of an analogous type, but not comparable to it generally. Then using the apparatus at hand and the methods of this section, we shall prove a moment theorem for the sequence $\left(e^{i l_{n} t}\right)$, with the separation condition on the exponents, for the interval $(-\infty, \infty)$. Then, in passing, we show how a generalization of a Tauberian theorem of Wiener yields the Hausdorff-Young theorem for generalized trigonometric series. Finally we extend a theorem of Gorny connecting the coefficients of the expansion of a function in a generalized trigonometric series, satisfying a separation theorem, with the mean values of the derivatives of the function.

Received November 11, 1943; in revised form November 30, 1943.

