DIFFERENTIABLE EVEN FUNCTIONS

By Hassler Whitney

An even function $f(x)=f(-x)$ (defined in a neighborhood of the origin) can be expressed as a function $g\left(x^{2}\right) ; g(u)$ is determined for $u \geq 0$, but not for $u<0$. We wish to show that g may be defined for $u<0$ also, so that it has roughly half as many derivatives as f. A similar result for odd functions is given.

Theorem 1. An even function $f(x)$ may be written as $g\left(x^{2}\right)$. If f is analytic, of class C^{∞} or of class $C^{2 s}, g$ may be made analytic, of class C^{∞} or of class C^{s}, respectively.

If $f(x)=\sum a_{i} x^{i}$ is even and analytic, then $a_{i}=0$ for i odd, and we may set $g(u)=\sum a_{2 i} u^{i}$, which is analytic.

Suppose f is even and of class $C^{2 s}$. Then Taylor's formula gives

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x^{2}+\cdots+a_{s-1} x^{2 s-2}+x^{2 s} \phi(x) . \tag{1}
\end{equation*}
$$

By Theorem 1 of [3], ϕ is even and continuous, and of class $C^{2 s}$ for $x \neq 0$, and

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{k} \phi^{(k)}(x)=0 \quad(k=1, \cdots, 2 s) \tag{2}
\end{equation*}
$$

Set $\psi(u)=\psi(-u)=\phi\left(u^{\frac{1}{2}}\right)$, and

$$
\begin{equation*}
g(u)=a_{0}+a_{1} u+\cdots+a_{s-1} u^{s-1}+u^{s} \psi(u) . \tag{3}
\end{equation*}
$$

Then $g\left(x^{2}\right)=f(x)$. To show that g is of class C^{s}, it is sufficient to show, by Theorem 2 of [3], that

$$
\begin{equation*}
\lim _{u \rightarrow 0} u^{k} \psi^{(k)}(u) \quad(k=0, \cdots, s) \tag{4}
\end{equation*}
$$

exists.
If we differentiate $\psi\left(x^{2}\right)=\phi(x)(x>0)$, a simple proof by induction shows that, for some constants $\alpha_{k i}$,

$$
\begin{equation*}
\phi^{(k)}(x)=\sum_{1 \leq i \leq \frac{1}{2} k} \alpha_{k i} x^{k-2 i} \psi^{(k-i)}\left(x^{2}\right)+2^{k} x^{k} \psi^{(k)}\left(x^{2}\right) \tag{5}
\end{equation*}
$$

Solving these equations in succession gives, for some $\beta_{k i}$,

$$
\begin{equation*}
2^{k} x^{k} \psi^{(k)}\left(x^{2}\right)=\phi^{(k)}(x)+\sum_{1 \leq i \leq k-1} \beta_{k i} x^{-i} \phi^{(k-i)}(x) \tag{6}
\end{equation*}
$$

Hence,

$$
x^{2 k} \psi^{(k)}\left(x^{2}\right)=\sum_{0 \leq i \leq k-1} \beta_{k i}^{\prime} x^{k-i} \phi^{(k-i)}(x),
$$

and (4) for $x>0$ follows from (2). Since $\psi(-u)=\psi(u)$, the theorem is proved for this case.

