A SPECIAL TYPE OF CONFORMAL MAP

By J. W. GREEN

1. Let G_z be the unit circle |z| < 1 in the z-plane and E a set of points on the circumference C_z of G_z which is open with respect to C_z . The set E is the sum of a finite or infinite number of open intervals and can be written $\sum \alpha_i$, where α_i is an open interval, the end points of which are not points of E. The summation runs from 1 to N or from 1 to ∞ according as the number of α_i is finite or infinite. E is the complement of E with respect to C_z and is assumed to be not void. It is desired to find a conformal mapping w = w(z) of G_z on the unit circle G_w with certain radial slits removed, such that points of E map continuously on points of E and the intervals E in the paper E radial slits. In this paper a radial slit means a line segment in the circle along a radius, of length less than the radius, and terminating at the circumference.

In terms of harmonic functions, it is desired to find a harmonic function u(z) in G_z , which becomes infinite like $-\log r$ at 0, such that u vanishes continuously on F and $\partial u/\partial r$ vanishes continuously on E; i.e., a Green's function for the mixed boundary value problem with respect to F and E. Such a u(z) is given by $-\log |w(z)|$. This Green's function can be obtained from the ordinary Green's function in the following way: let g(0, P) be the Green's function with pole at 0 for the region exterior to F, and $g(\infty, P)$ the one with pole at infinity. Set $u(P) = g(0, P) + g(\infty, P)$. At regular points of F, u(P) = 0. On E, $\partial u/\partial r = 0$, since $u(P) = u(P^*)$, where P and P^* are inverse in C_z . Thus, if all the points of F are regular, u(P) is the desired harmonic function in G_z . If F has irregular points, it is impossible to get a Green's function vanishing continuously on F. In the present paper, the described mapping function and thus the corresponding Green's function will be obtained under restrictive conditions on E and F as the solution of an extremal problem in the theory of analytic functions.

The set F can be written in the form $F = (C_z - \overline{E}) + (\overline{E} - E)$, where $(C_z - \overline{E})$ is open or null. This latter case will henceforth be prohibited, i.e., F will be assumed to have some interior points. Thus, we can write $(C_z - \overline{E}) = \sum \beta_i = \beta$, where β_i is an open interval. The set $(\overline{E} - E)$ is nowhere dense. Consider the class Γ of functions f(z) with the following properties:

- (1) f(z) is analytic and schlicht in G_z ;
- (2) |f(z)| < 1 in G_z and f(0) = 0;
- (3) f(z) is continuous on $G_z + \beta$ and |f(z)| = 1 on β .

The class Γ is not void since it contains $f(z) \equiv z$. The principal theorem of this paper is as follows:

THEOREM 1. Let the set β and the class Γ be as described above. There exists a function g(z) contained in Γ such that $|g'(0)| \leq |f'(0)|$ for every f of Γ . The

Received May 9, 1941; in revised form, November 3, 1942.