THE RECIPROCAL OF CERTAIN SERIES

By L. Carlitz

1. Introduction. This paper is concerned with properties of the coefficients in the reciprocal of series of the type

$$
\begin{equation*}
f(u)=\sum_{i=0}^{\infty}(-1)^{i} \frac{A_{i}}{F_{i}} u^{p^{n i}} \quad\left(A_{0}=1\right) \tag{1.1}
\end{equation*}
$$

where

$$
F_{i}=[i] F_{i-1}^{p^{n}}, \quad[i]=x^{p^{n i}}-x, \quad F_{0}=1,
$$

and the A_{i} are arbitrary polynomials in the indeterminate x with coefficients in $G F\left(p^{n}\right)$. (While convergence questions are of little interest here we remark that for

$$
\operatorname{deg} A_{i}<c i p^{i} \quad(c<1)
$$

(1.1) converges for all u.) We denote the inverse of $f(u)$ by $\lambda(u)$ so that

$$
\begin{equation*}
f(\lambda(u))=u=\lambda(f(u)) ; \tag{1.2}
\end{equation*}
$$

then in general we can assert only that $\lambda(u)$ is also of the form (1.1), that is,

$$
\begin{equation*}
\lambda(u)=\sum_{i=0}^{\infty} \frac{A_{i}^{\prime}}{F_{i}} u^{p^{n i}}, \tag{1.3}
\end{equation*}
$$

where the A_{i}^{\prime} are polynomials in x. This follows almost immediately from the recursion formula

$$
\sum_{i=0}^{m}(-1)^{m-i} \frac{F_{m}}{F_{i} F_{m-i}^{p^{n i}}} A_{i} A_{m-i}^{\prime p^{\text {ni }}}=0 \quad \text { for } \quad m>0
$$

and the fact that the F-quotients are integral (that is, polynomials in x). For our purpose we shall require somewhat more, namely that $\lambda(u)$ is of the form

$$
\begin{equation*}
\lambda(u)=\sum_{i=0}^{\infty} \frac{D_{i}}{L_{i}} u^{p^{n i}}, \tag{1.4}
\end{equation*}
$$

where the D_{i} are integral and

$$
L_{i}=[i] L_{i-1}, \quad \quad L_{0}=1 ;
$$

this is equivalent to requiring that the A_{i}^{\prime} in (1.3) is a multiple of F_{i} / L_{i}.
We now put

$$
\begin{equation*}
\frac{u}{f(u)}=\sum_{m=0}^{\infty} \frac{\beta_{m}}{g_{m}} u^{m} \quad\left(p^{n}-1 \mid m\right) \tag{1.5}
\end{equation*}
$$

where g_{m} is defined by

$$
g_{m}=F_{0}^{b_{0}} F_{1}^{b_{1}} \cdots F_{s}^{b_{s}}
$$

Received January 9, 1942.

