YOUNG'S SEMI-NORMAL REPRESENTATION OF THE SYMMETRIC GROUP

By R. M. Thrall

Introduction. The main purpose of this note is to give a new (shorter and more elementary) derivation of A. Young's semi-normal representation of the symmetric group. As a starting point we take the discussions by H. Weyl ([6], Chap. IV, §2, 3) and D. E. Littlewood ([4], Chap. V, especially §4).

Denote the partition $m=\lambda_{1}+\cdots+\lambda_{\kappa}, \lambda_{1} \geqq \cdots \geqq \lambda_{\kappa}>0$ by (λ). We represent (λ) geometrically by an array of squares; λ_{1} in the 1 st row, \ldots, λ_{κ} in the κ-th row; the j-th squares of the rows making a column. The m squares or fields of the array are labelled by the numbers from 1 to m in such a way that the labels in every row increase from left to right and in every column increase from top to bottom. The array thus labelled is called a regular Young diagram belonging to the partition (λ).

Associated with each partition (λ) of m there is an irreducible matrix representation of the symmetric group, \Im_{m}, of degree m. The degree ${ }^{1} g(\lambda)$ of this representation is equal to the number of regular Young diagrams belonging to (λ). Let the label of the field in the α-th row and β-th column of a regular diagram, T, be denoted by $a(\alpha, \beta)$. If T and T^{\prime} both belong to (λ) we say that
(1) $\quad T$ precedes T^{\prime} if each of the fields labelled $m, m-1, \cdots, m-r+1$ lies in the same row in both diagrams, but the field $m-r$ lies in a lower row in T than in T^{\prime}.
We enumerate the regular diagrams belonging to (λ) according to this ordering. Now number the partitions (λ) of m according to their dictionary order ${ }^{2}$ and denote by $T(i j)$ the j-th regular Young diagram belonging to the i-th partition of m.

Corresponding to each diagram $T(i j)$ we shall define a primitive idempotent $e(i j)$ in the group Ω-ring, \Re_{m}, of \Im_{m}. [Ω is here the field of complex numbers.]

Let $\epsilon(i)=\sum e(i j)$, summed for j from 1 to $g\left(\lambda^{i}\right)$. Then the two sided ideal $\epsilon(i) \Re_{m}$ of \Re_{m} is a total matrix algebra $\mathfrak{N}_{i}=\mathfrak{H}\left(\lambda^{i}\right)$, of degree $g\left(\lambda^{i}\right)$, homomorphic with \Re_{m} under the mapping $x \rightarrow x(i)=\epsilon(i) x$; and \Re_{m} is the direct sum of the simple algebras \mathscr{H}_{i}.

The next step is the choice of elements $e(i j k), j, k=1, \cdots, g\left(\lambda^{i}\right)$, which constitute an ordinary matrix basis ([1], p. 7) for \mathfrak{A}_{i}. In the terminology of representation theory the element x of \Re_{m} is ordered to the matrix $B_{i}(x)=$

Received April 21, 1941.
${ }^{1}$ [4], Th. I, p. 68, Th. IV, p. 75; [6], Th. 7.7B, p. 213.
${ }^{2}$ That is, (λ) has a smaller number than (λ^{\prime}) if the first non-vanishing difference $\lambda_{1}-\lambda_{1}^{\prime}, \lambda_{2}-\lambda_{2}^{\prime}, \ldots$ is positive.

