A THEOREM OF BOAS
By NormAN LEvINsON

Boas has proved the following theorem.'

TueoreM. If the entire function f(2) satisfies

1 lim sup I%I log | f(z) | < log2

|2] o0
and f(2) is not a polynomial, an infinite number of derivatives of f(z) are univalent
in the unit circle | 2 | < 1.

Here we shall give a direct and quite simple proof of this theorem. Inciden-
tally, as has been pointed out to me by Boas, this also furnishes a simple proof
for a theorem of Takenaka. Takenaka’s theorem® states that if every derivative
of an entire function f(2) has a zero inside or on the unit circle and if (1) holds,
then f(z) vs a constant.

Obviously, Takenaka’s theorem is an immediate consequence of the above
stated theorem of Boas.

We now turn to the proof of the theorem of Boas.? By a trivial change of
variable it will suffice to show that

1
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implies that an infinite number of derivatives of f(z) are univalent in |2z| <

log 2.
Let the power series for f(z) be
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From the Cauchy integral formula for a, and from (2) it follows that
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for large B. In particular, if B = n,
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