FUNCTIONS WITH POSITIVE DERIVATIVES

By R. P. Boas, Jr.

D. V. Widder has called my attention to the fact that a function having all its derivatives of even order non-negative in an interval is necessarily analytic there. This is a special case of results which have been stated, without detailed proof, by S. Bernstein;¹ it is useful in the theory of Laplace integrals.² In the first part of this note, I give an elementary proof of the theorem, and a proof, by methods differing from Bernstein's, of Bernstein's general theorem. This is

THEOREM 1. Let $\{n_p\}$ (p = 1, 2, ...) be an increasing infinite sequence of positive integers such that n_{p+1}/n_p is bounded. If f(x) is of class³ C^{∞} in a < x < b, and has the property that for each p (p = 1, 2, ...) $f^{(n_p)}(x)$ does not change sign in a < x < b, then f(x) is analytic in a < x < b.

The greater part of this note is devoted to showing that Theorem 1 is, in a certain direction, the best possible result. I construct, for any sequence $\{n_p\}$ such that $n_{p+1}/n_p \to \infty$, a function whose n_p -th derivatives are positive in an interval, but which is not analytic in the interval. (The case where lim sup $(n_{p+1}/n_p) = \infty$, lim inf $(n_{p+1}/n_p) < \infty$ is left open.) More precisely, I prove

THEOREM 2. Let $\{n_p\}$ (p = 1, 2, ...) be an increasing infinite sequence of positive integers such that $\lim_{p \to \infty} n_{p+1}/n_p = \infty$. Then there is a function f(x), of class C^{∞} in -1 < x < 1, such that f(x) > 0 in -1 < x < 1, and

(1)
$$f^{(n_p)}(x) > 0$$
 $(-1 < x < 1; p = 1, 2, \cdots),$

(2)
$$f(x)$$
 is not analytic in $-1 < x < 1$

The function f(x) will be defined by means of its development in a series of Chebysheff polynomials.

In Theorem 1, it could equally well be supposed that f(x), instead of having n_p -th derivatives which do not change sign, is continuous and has n_p -th dif-

Received September 21, 1940; presented to the American Mathematical Society, September 10, 1940.

¹S. Bernstein, Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle, Paris, 1926, pp. 196-197.

² D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bulletin of the American Mathematical Society, vol. 40(1934), pp. 321-326.

³ A function is of class C^n $(n = 1, 2, \dots)$ if it has a continuous *n*-th derivative; of class C^{∞} if of class C^n for every *n*.