PROJECTIONS IN MINKOWSKI AND BANACH SPACES

By Andrew Sobczyk

Introduction. In his now classic *Théorie des Opérations Linéaires* Banach proposed the following problem: Given any closed linear subspace of a Lebesgue function space L_p (or of a sequence space l_p), 1 , does there always exist a complementary closed linear subspace? Or, equivalently, does there always exist a*projection* $on any closed linear subspace of <math>L_p$ or of l_p ? The question has recently been answered, in the negative, by F. J. Murray [6].

Bohnenblust [3] investigated projections of n-dimensional Minkowski spaces on (n-1)-dimensional subspaces, with a view toward illuminating the question of the existence of projections in general Banach spaces. In this paper we take further steps in this direction.²

We first obtain, after necessary preliminaries to later general considerations (§1), in §2 the results of Murray by a briefer method, and in addition quantitative information which Murray did not obtain. In §3 we discuss orthogonal projections, and apply the results to obtain further quantitative information. Various generalizations of l_p -spaces are then introduced. In §4, we study a class of Banach spaces S, of which the elements are infinite sequences $x = \{x_i\}$, and which have the following symmetry property: If $x = \{x_i\}$ is any element of S, then $\{|x_i|\}$ is also an element of S, and $||\{x_i\}|| = ||\{|x_i|\}||$. These spaces include Banach spaces with a base $\{X_i\}$ having the corresponding symmetry property: if $x = \sum_{i=1}^{\infty} x_i X_i$ is the expansion of an element, then $\sum_{i=1}^{\infty} |x_i| \cdot X_i$

is an element, and $||x|| = ||\sum_{i=1}^{\infty} |x_i| \cdot X_i||$. In any space S, a Euclidean norm $||x||_2$ is introduced on a certain dense linear subset, and it is shown that if a projection exists for every closed linear subspace, then the Euclidean radii of the unit sphere of S in certain directions must be bounded both from 0 and from ∞ . In particular, if for a space S these directions are "minimal" or "maximal", this is sufficient to require the space to be isomorphic to Hilbert space.

In §5, we study a type of spaces S which are generated by two-dimensional norms, in particular, spaces defined by a sequence p_2 , p_3 , p_4 , \cdots of exponents. These spaces specialize to l_p -spaces in case $p = p_2 = p_3 = \cdots$. Finally, in §6,

Received May 23, 1940; presented to the American Mathematical Society, September 5, 1939.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

² The writer wishes to acknowledge his indebtedness to Professor Bohnenblust, both for suggesting the original problem of this investigation, and for stimulation and help received in our many discussions.