THE FRACTIONAL DERIVATIVE OF A LAPLACE INTEGRAL
By C. V. L. SmrtH
Introduction. The integral
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where «(f), a function of the real variable ¢, is of bounded variation in (0, R)
for every positive B, has been exhaustively studied by D. V. Widder [9, 10, 11,
12].' In the present paper, we shall consider the integral
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where «(t) is as described above, and p is a positive constant, restricting our-
selves to the case where z and a(f) are real.
In the case of the integral (1), «(f) is said to be normalized if
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In the present case, we may also take «(0+) = 0. For let 8(0) = 0, B(¢) =
a(0+) for 0 < ¢, and set a*(t) = a(t) — B(t) for 0 = ¢. Since the integral
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is obviously convergent for all real  and has the value zero, it is clear that
wherever the integral (2) converges we have
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The function «(f) will always be taken as satisfying the conditions (3) and the
condition «(0+) = 0; and any function satisfying these conditions will be said
to be normalized.

The derivatives of the function defined by a convergent integral of the form
(1) are given by the integrals ([9], p. 702)
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which leads one to expect that, if p is non-integral, (2) is either the fractional

derivative of order p of (1) or its negative. Integrals of the form (1) con-

Received May 15, 1940.
! Numbers in brackets refer to the bibliography at the end of the paper.
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