THE SUBGROUP OF ORDER n OF A TRANSITIVE GROUP OF DEGREE n AND CLASS n-1

By Louis Weisner

It is known that a transitive permutation group of degree n and class n-1 has an invariant subgroup of order n consisting of the identity and n-1 permutations of degree n.¹ The object of this paper is to demonstrate that this subgroup of order n is an Abelian group.²

A permutation of degree n-1 of a transitive permutation group of degree n and class n-1 generates, with the unique subgroup N of order n, a group G which is also a transitive permutation group of degree n and class n-1. We shall confine our attention to this group G. If the order of G is mn, a subgroup M of G that leaves one symbol fixed is a cyclic group of order m, and $G = \{M, N\}$. Let G' be an abstract group simply isomorphic with G, and let M' and N' be the subgroups of G' that correspond to M and N, respectively.

Since N is the commutator subgroup of G, G' has exactly m distinct representations in one variable. Denote these by Γ_1 , \cdots , Γ_m , where Γ_1 , as usual, denotes the identical representation. Let Γ_{m+1} , \cdots , Γ_r be the other distinct irreducible representations of G', and let n_v be the number of variables operated on by Γ_v .

The relation among group characters

$$\sum_{v=1}^{r} \chi_{i}^{(v)} \chi_{i'}^{(v)} = g/h_{i},$$

where h_i is the number of elements in the *i*-th conjugate set of G and g is the order of G, becomes, for an element $A \neq 1$ of M',

$$\sum_{v=1}^r \chi^{(v)}(A)\chi^{(v)}(A^{-1}) = m.$$

The terms which arise from $v = 1, \dots, m$ have the value 1; hence

(1)
$$\chi^{(v)}(A) = 0$$
 $(v = m + 1, \dots, r).$

Received August 29, 1938; presented to the American Mathematical Society, September 6, 1938.

- ¹ G. Frobenius, Ueber auflösbare Gruppen IV, Sitzungsberichte Berlin, 1901, pp. 1223-1225; A. Speiser, Theorie der Gruppen von endlicher Ordnung, 3d edition, 1937, p. 202.
- ² The theorem has been proved for the case in which the subgroup that leaves one symbol fixed is of even order. See W. Burnside, *Theory of Groups of Finite Order*, 2d edition, 1911, p. 172.
 - ³ We could take m to be a prime number, but no advantage is to be derived therefrom.