THE WARING PROBLEM WITH SUMMANDS x^m , $m \ge n$

By MARY HABERZETLE

In the original Waring problem the summands considered are positive integral *n*-th powers. By using different types of summands one obtains various modifications of the problem. In this paper those of the form x^m , $m \ge n$, are used. If a positive integer is a sum of u such summands with $x \ge 0$, it is said to be a sum of u "values". If $n \ge 9$ and $r \le 2^n - k - 3$, $I = 2^n + k - 1$ values are necessary and sufficient to represent every positive integer; r is defined by $3^n = 2^n q + r$, $q = [(\frac{3}{2})^n]$, and k = [.584963n]. The notation [x] denotes the largest integer $\le x$. For $9 \le n \le 400$ it is shown that the inequality $r \le 2^n - k - 3$ is satisfied.

This problem was suggested by L. E. Dickson.

1. Representation of integers $\leq 2^n q$. Write $3^n = 2^n q + r$, $1 \leq r < 2^n$, $q = [(\frac{3}{2})^n]$.

LEMMA A. Every positive integer $< 2^x - 1$ is a sum of at most x - 1 terms 1, 2, \cdots , 2^{x-1} .

The lemma may be verified for x = 1, x = 2. Assume, therefore, that it is true for integers $\langle 2^{x} - 1 \rangle$ and prove by induction. The integer $2^{x} - 1$ is equal to $1 + 2 + \cdots + 2^{x-1}$ and hence requires x terms. The integers $2^{x} + 1$, $2^{x} + 2$, \cdots , $2^{x+1} - 2$ are each the sum of 2^{x} and an integer $\langle 2^{x} - 1 \rangle$. Hence all $\langle 2^{x+1} - 1 \rangle$ are sums of at most x terms 1, 2, \cdots , 2^{x} .

Let k be the maximum positive integer such that $2^{n+k} \leq 2^n q$. Then k is the largest integer for which $2^k \leq q = [(\frac{3}{2})^n]$, that is,

$$k = [(n \log \frac{3}{2})/\log 2] = [.584963n].$$

LEMMA 1. All positive integers $\leq 2^n q$ are sums of $I = 2^n + k - 1$ values. The integer $2^{n+k} - 1$ requires exactly I values.

Let $B = 2^n x + y$, $0 \le y \le 2^n - 1$, $0 \le x < q$. Then $x < 2^{k+1} - 1$ and by Lemma A is a sum of at most k terms 1, $2^2, \dots, 2^k$. Hence B is a sum of $2^n + k - 1$ values. Since $q \le 2^{k+1} - 1$, $2^n q$ is a sum of k + 1 values. The integer $2^{n+k} - 1$ is equal to $2^n(1 + 2 + \dots + 2^{k-1}) + 2^n - 1$ and hence is a sum of $2^n + k - 1$ values and not fewer.

2. Results from the asymptotic theory. The following theorem, whose proof is due to Vinogradow¹ and L. E. Dickson,² is stated here with an improved

Received June 9, 1938.

¹ Vinogradow, On Waring's problem, Annals of Mathematics, vol. 36(1935), pp. 395-405.

² L. E. Dickson, *Proof of the ideal Waring theorem for exponents* 7–180, American Journal of Mathematics, vol. 58(1936), p. 525.