THE WARING PROBLEM WITH SUMMANDS $x^{m}, m \geqq n$

By Mary Haberzetle

In the original Waring problem the summands considered are positive integral n-th powers. By using different types of summands one obtains various modifications of the problem. In this paper those of the form $x^{m}, m \geqq n$, are used. If a positive integer is a sum of u such summands with $x \geqq 0$, it is said to be a sum of u "values". If $n \geqq 9$ and $r \leqq 2^{n}-k-3, I=2^{n}+k-1$ values are necessary and sufficient to represent every positive integer; r is defined by $3^{n}=2^{n} q+r, q=\left[\left(\frac{3}{2}\right)^{n}\right]$, and $k=[.584963 n]$. The notation $[x]$ denotes the largest integer $\leqq x$. For $9 \leqq n \leqq 400$ it is shown that the inequality $r \leqq 2^{n}-$ $k-3$ is satisfied.

This problem was suggested by L. E. Dickson.

1. Representation of integers $\leqq 2^{n} q$. Write $3^{n}=2^{n} q+r, 1 \leqq r<2^{n}$, $q=\left[\left(\frac{3}{2}\right)^{n}\right]$.

Lemma A. Every positive integer $<2^{x}-1$ is a sum of at most $x-1$ terms $1,2, \cdots, 2^{x-1}$.

The lemma may be verified for $x=1, x=2$. Assume, therefore, that it is true for integers $<2^{x}-1$ and prove by induction. The integer $2^{x}-1$ is equal to $1+2+\cdots+2^{x-1}$ and hence requires x terms. The integers $2^{x}+1$, $2^{x}+2, \cdots, 2^{x+1}-2$ are each the sum of 2^{x} and an integer $<2^{x}-1$. Hence all $<2^{x+1}-1$ are sums of at most x terms $1,2, \cdots, 2^{x}$.

Let k be the maximum positive integer such that $2^{n+k} \leqq 2^{n} q$. Then k is the largest integer for which $2^{k} \leqq q=\left[\left(\frac{3}{2}\right)^{n}\right]$, that is,

$$
k=\left[\left(n \log \frac{3}{2}\right) / \log 2\right]=[.584963 n] .
$$

Lemma 1. All positive integers $\leqq 2^{n} q$ are sums of $I=2^{n}+k-1$ values. The integer $2^{n+k}-1$ requires exactly I values.

Let $B=2^{n} x+y, 0 \leqq y \leqq 2^{n}-1,0 \leqq x<q$. Then $x<2^{k+1}-1$ and by Lemma A is a sum of at most k terms $1,2^{2}, \cdots, 2^{k}$. Hence B is a sum of $2^{n}+k-1$ values. Since $q \leqq 2^{k+1}-1,2^{n} q$ is a sum of $k+1$ values. The integer $2^{n+k}-1$ is equal to $2^{n}\left(1+2+\cdots+2^{k-1}\right)+2^{n}-1$ and hence is a sum of $2^{n}+k-1$ values and not fewer.
2. Results from the asymptotic theory. The following theorem, whose proof is due to Vinogradow ${ }^{1}$ and L. E. Dickson, ${ }^{2}$ is stated here with an improved

[^0]
[^0]: Received June 9, 1938.
 ${ }^{1}$ Vinogradow, On Waring's problem, Annals of Mathematics, vol. 36(1935), pp. 395-405.
 ${ }^{2}$ L. E. Dickson, Proof of the ideal Waring theorem for exponents 7-180, American Journal of Mathematics, vol. 58(1936), p. 525.

