PRÜFER IDEALS IN COMMUTATIVE RINGS

By D. M. Dribin

1. Introduction. H. Prüfer has given ${ }^{1}$ a general definition of an ideal in a field and has investigated the properties of these ideals in certain ideal systems. In the present paper a similar study is made, but the algebraic domain of reference will be taken to be a commutative ring \Re having a unit element and possessing no divisors of zero. ${ }^{2}$
2. Divisibility properties of elements. The present section, although of some interest, is largely irrelevant to the main matter of the paper but can be conveniently treated at this point.
Let \mathfrak{g} be a subring of \Re with a unit element; the concept of divisibility can now be defined relative to \mathfrak{g} so that the elements of \mathfrak{g} may be thought of as the
 $b y b$ if $a=b c$, where c is in \mathfrak{g}. Obviously, divisibility relative to \mathfrak{g} is a reflexive and transitive property. If a and b divide each other, $a=b \epsilon_{1}, b=a \epsilon_{2}$, then $\epsilon_{1} \epsilon_{2}=1$, where ϵ_{1} and ϵ_{2} are integral elements; such integers which are divisors of 1 are called units in \mathfrak{g} and elements a and b related as above, associated elements.

If a and b are integral, then an element d in \mathfrak{g} is said to be a greatest common divisor of a and b if a and b are divisible by d and if d is divisible by every common divisor of a and b. If d is a unit, then a and b are said to be relatively prime. \mathfrak{R} is complete ${ }^{3}$ (relative to \mathfrak{g}) if every pair of elements in \mathfrak{g} has a g. c.d.

A prime element p in \mathfrak{g} is an integral element that is not a unit and whose divisors are associated with 1 or $p . \Re$ is primary (relative to \mathfrak{g}) if for every two integers a and b it is true that either a and b are relatively prime or that there exists a common prime element divisor p of a and b. Hence, if \Re is primary, every integer $a \neq 0$ is either a unit or is divisible by a prime element.

The following theorem is proved in a manner very similar to that of a theorem of Prüfer: ${ }^{4}$

Theorem 1. If \Re is complete relative to \mathfrak{g}, and if $a=a_{1} \ldots a_{n}$ (where a, a_{i} ($i=1, \cdots, n$) are integers) is divisible by b, then $b=b_{1} \cdots b_{n}$, where b_{i} ($i=1, \cdots, n$) is an integer which divides a_{i}.

Received May 5, 1938; presented to the American Mathematical Society, April 16, 1938. The author is a National Research Fellow.
${ }^{1}$ Untersuchungen über Teilbarkeitseigenschaften in Körpern, Journal für Mathematik, vol. 168(1932), pp. 1-36.
${ }^{2}$ That is, \Re is a domain of integrity (Integritätsbereich) with unit element.
${ }^{3}$ Prüfer, op. cit., p. 3.
${ }^{4}$ Loc. cit., Theorem 3.

