# EQUIDISTRIBUTION OF RESIDUES IN SEQUENCES 

By Marshall Hall

1. Introduction. A sequence of rational integers $v_{0}, v_{1}, \cdots$ satisfying a rational integral linear recurrence

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\cdots+a_{k} u_{n} \tag{1.1}
\end{equation*}
$$

is periodic ${ }^{1}$ modulo an arbitrary prime $p$, that is,

$$
\begin{equation*}
u_{n+\tau} \equiv u_{n}(\bmod p) \tag{1.2}
\end{equation*}
$$

for a fixed $\tau$ and all $n \geqq n_{0}(p)$. The polynomial $f(x)=x^{k}-a_{1} x^{k-1}-\cdots-a_{k}$ is called the characteristic of (1.1). This paper is concerned with the distribution of the residues $0,1, \cdots, p-1(\bmod p)$ in sequences satisfying (1.1). This distribution has been investigated in two papers, one by Ward ${ }^{2}$ supposing $f(x)$ to be a cubic irreducible modulo $p$, and another by the author ${ }^{3}$ supposing $f(x)$ to be any polynomial irreducible modulo $p$.

Here it is shown that if $f(x)$ is the product of a linear factor and an irreducible factor modulo $p$, the number of zeros in the different blocks will satisfy equations similar to those found in H. (Compare equations (2.3) in this paper with equations (13.8) in H .)

By a simple device these results may be used to show that when $f(x)$ is irreducible modulo $p$ and the period of $\left(v_{n}\right)$ is $\tau$, an arbitrary residue $a(\bmod p)$ will occur $\tau p^{-1}+c_{a}$ times in any $\tau$ consecutive terms of $\left(v_{n}\right)$, where $\left|c_{a}\right|<p^{\frac{3}{(k-1)}}$.

The notation and terminology throughout are those of H .
2. Distribution of zeros. Suppose

$$
\begin{equation*}
f(x) \equiv(x-d) h(x)(\bmod p) \tag{2.1}
\end{equation*}
$$

where $h(x)$ is irreducible modulo $p$ and at least of second degree. ${ }^{4}$ A sequence

$$
\begin{equation*}
\left(v_{n}\right) \rightleftarrows g(x) \tag{2.2}
\end{equation*}
$$

Received April 28, 1938.
${ }^{1}$ R. D. Carmichael, On sequences of integers defined by recurrence relations, Quarterly Journal of Mathematics, vol. 48(1920), pp. 343-372.
${ }^{2}$ Morgan Ward, The distribution of residues in a sequence satisfying a linear recursion relation, Transactions of the American Mathematical Society, vol. 33(1931), pp. 166-190.
${ }^{3}$ Marshall Hall, An isomorphism between linear recurring seguences and algebraic rings, Transactions of the American Mathematical Society, vol. 44 (1938), pp. 196-218. This paper will be referred to as H .
${ }^{4}$ For second order sequences see Marshall Hall, Divisors of second order sequences, Bulletin of the American Mathematical Society, vol. 43(1937), pp. 78-80, and the note to Theorem 13.5 of H .

