FACTORIZATION IN PRINCIPAL IDEAL RINGS

By H. Serbin

Factorization theorems in a ring $K[x]$ of polynomials over a field K have been obtained by several writers [1, 3]. ${ }^{1}$ We consider this problem in the present paper for associative rings of a more general type, namely, rings (with unit element) in which every left ideal is a principal left ideal. We prove that two similar elements in such a ring which are factored in some way into a product of elements in $K[x]$ possess further factorizations which are essentially alike. The relation of two-sided ideals to left ideals is also considered for special rings. The latter leads to a generalization of a theorem due to N. Jacobson [2].

1. Examples of rings which are principal left ideal rings. Among such are:
(a) $K[x]$, a ring of polynomials $\alpha=\sum_{i=0}^{n} k_{i} x^{i}\left(n=0,1,2, \cdots, k_{n} \neq 0\right)$ in one indeterminate x over a field K (non-commutative in general). The degree of α equals n. One assumes [3] that there is an associative and distributive (over addition) multiplication defined such that

$$
\begin{equation*}
\operatorname{deg}(\alpha \cdot \beta)=\operatorname{deg} \alpha+\operatorname{deg} \beta \tag{1}
\end{equation*}
$$

for each pair α, β of elements of $K[x]$. Condition (1) implies

$$
x \alpha=\bar{\alpha} x+\alpha^{\prime} .
$$

Cf. [2].
(b) R_{n}, the square matrix ring of degree n with elements from R, where R is itself a principal left ideal ring with unit element.

To show this, let I be a left ideal in R_{n} and consider the set of all vectors $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$, where $\alpha_{k}=a_{i k}(k=1, \cdots, n)$, the matrix ($a_{i k}$) being in I. This set forms an R-left module M when addition is defined by

$$
\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \pm\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)=\left(\alpha_{1} \pm \beta_{1}, \alpha_{2} \pm \beta_{2}, \cdots, \alpha_{n} \pm \beta_{n}\right)
$$

and

$$
\rho\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=\left(\rho \alpha_{1}, \rho \alpha_{2}, \cdots, \rho \alpha_{n}\right), \quad \rho \in R .
$$

The first components of all the vectors in M thus form a left ideal in R generated by some element, say α, which must therefore be the first component of some vector A_{1} in M. If $\alpha=0$, then choose A_{1} to be the null vector ($0,0, \ldots, 0$). Every vector of M is congruent $\left(\bmod A_{1}\right)$ to a vector in which the first com-

Received January 31, 1938.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

