SOLUTIONS OF A DIFFERENTIAL EQUATION OF THE FIRST ORDER AND FIRST DEGREE IN THE VICINITY OF BRANCH POINTS OF THE SOLUTION

By Jesse Pierce

Introduction. In this paper a method previously developed¹ for solving systems of differential equations about an ordinary point is applied to the equation

(1)
$$2x \frac{dx}{dt} = \sum_{h=0}^{\infty} f_h(t) x^h \qquad (f_0(t) \neq 0),$$

which has a singularity at x = 0.

The coefficients $f_h(t)$, which for convenience will be represented by f_h , are assumed to satisfy the following conditions:

I. The functions f_h $(h = 1, 2, \dots)$ are real and are dominated on the interval (t_0, t_1) by a function f of t. The functions f_h $(h = 0, 1, \dots)$ are integrable (Riemann) and their only points of discontinuity belong to a set E of measure zero.

II. The function f is integrable (Riemann) on the interval (t_0, t_1) and is equal to unity for all values of $t < t_0$. The points of discontinuity of f belong to the set E. The definite integral of f on the interval (t'_0, t_0) where $t'_0 \leq t_0$ is represented by

(2)
$$\int_{t_0}^{t_0} f dt = t_0 - t_0' = c \ge 0.$$

III. The function f_0 is real and satisfies the inequalities

(3)
$$\begin{cases} 0 \leq \int_{t_0}^t f_0 dt \leq \int_{t_0}^t f dt, \\ \frac{1}{\int_{t_0}^t f_0 dt + c} \leq \frac{A^2}{\int_{t_0}^t f dt + c} \equiv \frac{A^2}{F^2}, \end{cases}$$

where A is a real constant satisfying the inequality $A \ge 1$ and the zeros of the function F belong to the set E.

1. Formal solutions of the differential equation (1). The transformation

(4)
$$x = \sum_{h=1}^{\infty} y_h K^h,$$

Received December 15, 1937; in revised form, October 7, 1938.

¹ J. Pierce, Solutions of systems of differential equations in terms of infinite series of definite integrals, this Journal, vol. 3(1937), pp. 616-622.