FUNCTIONS OF INTEGRABLE SQ.UARE IN SEVERAL COMPLEX VARIABLES

By S. Bochner

As in two previous notes ${ }^{1}$ we consider in the space C_{k} of k complex variables

$$
z=\left(z_{1}, \cdots, z_{k}\right), \quad z_{\kappa}=x_{k}+i y_{\kappa},
$$

point sets of a special nature which we call tubes. A point set T of C_{k} is a tube, if there exists a point set S in the space R_{k} of real variables $x=\left(x_{1}, \ldots, x_{k}\right)$ such that T consists of all k-dimensional planes

$$
\begin{equation*}
x_{\kappa}=x_{\kappa}^{0} \quad\left(-\infty<y_{\kappa}<\infty ; \kappa=1, \cdots, k\right) \tag{1}
\end{equation*}
$$

for which $\left(x_{1}^{0}, \cdots, x_{k}^{0}\right)$ is any point of S. The set S is called the basis of T, and we also denote T more explicitly by T_{s}. The tube T_{s} is open or closed in C_{k} if and only if S is open or closed in R_{k}; it is convex if and only if S is convex, and the convex hull ${ }^{2} \widetilde{T}$ of a tube T is again a tube whose basis \widetilde{S} is the convex hull of S.

We say that a function $f(z)=f\left(z_{1}, \cdots, z_{k}\right)$ is of integrable square in T if the function

$$
f_{x}(y)=f\left(x_{1}+i y_{1}, \cdots, x_{k}+i y_{k}\right)
$$

belongs to the Lebesgue class L_{2} over the y-space, for every $x \subset S$, and if moreover there exists a constant K such that

$$
\begin{equation*}
\int \underset{-\infty}{\infty} \underset{-\infty}{\infty}\left|f_{x}(y)\right|^{2} d v_{y} \leqq K, \tag{2}
\end{equation*}
$$

for all $x \subset S$, the symbol $d v_{y}$ denoting the Euclidean volume element $d y_{1} \ldots d y_{k}$.
In our first note we proved the following theorem. If $f(z)$ is analytic and of integrable square in an open tube T, then it also exists and is of integrable square in \widetilde{T}. In the present paper we shall extend this theorem to the case of tubes which are not necessarily open.
Assumptions. (1) The basis S is such that any two points P, Q of S have a finite Euclidean distance $D(P, Q)$ on S in the following sense. Corresponding to

Received May 6, 1938.
${ }^{1}$ S. Bochner, Bounded analytic functions in several variables and multiple Laplace integrals, American Journal of Math., vol. 59(1937), pp. 731-738; A theorem on analytic continuation of functions in several variables, Annals of Math., vol. 39(1938), pp. 14-19. I am indebted to H . Behnke for pointing out to me that the theorem of the second note can be proved in a much simpler fashion. See K. Stein, Zur Theorie der Funktionen mehrerer komplexer Veränderlichen, Math. Annalen, vol. 114(1937), p. 557.
${ }^{2}$ This is the smallest convex set containing T; it is not necessarily closed.

