LINEAR FUNCTIONALS SATISFYING PRESCRIBED CONDITIONS

By RALPH PALMER AGNEW

1. Introduction. A function (or transformation) $q \equiv q(x)$ with domain and range in linear spaces is called *linear* if

$$q(ax + by) = aq(x) + bq(y) (a, b \in R; x, y \in E),$$

where E is the domain of q and R is the set of real numbers. If the range of q(x) is in R, then q(x) is called a functional. Using notation of Banach¹ we call a functional p(x) a p-function if

$$p(tx) = tp(x) (t \ge 0; x \in E),$$

$$(1.03) p(x+y) \le p(x) + p(y) (x, y \in E).$$

We denote the class of linear functionals $f \equiv f(x)$ by F and the class of p-functions by P.

A theorem of Banach (loc. cit., p. 29) of which we make repeated use is Theorem 1.1. If $p \in P$, then there exists $f \in F$ with

$$(1.11) f(x) \leq p(x) (x \in E).$$

Since each linear functional f is also a p-function, i.e., $F \subset P$, the following theorem, of which we shall make explicit and implicit use, is trivial.

THEOREM 1.2. If $f \in F$, then there exists $p \in P$ with $f(x) \leq p(x)$ for all $x \in E$. Let $p_0 \in P$ and a set Ψ of pairs $\{x, y\}$ of elements $x, y \in E$ be prescribed. One problem in which we shall be interested is that of determining whether there exist linear functionals $f \in F$ possessing the properties

$$f(x) \leq p_0(x) \qquad (x \in E),$$

$$(1.22) f(y) = f(x) (\lbrace x, y \rbrace \epsilon \Psi).$$

We assume Ψ has the property that if $\{x, y\} \in \Psi$ then $\{y, x\} \in \Psi$, and that $\{x, x\} \in \Psi$ for each $x \in E$; this assumption is convenient and entails no loss of generality.

We shall say that a p-function $p \equiv p(x)$ enforces a specified property (or set of properties) if every $f \in F$, with $f(x) \leq p(x)$ for all $x \in E$, must possess the specified property (or set of properties).

For example, a slight amplification of work of Banach (loc. cit., p. 33) shows

Received September 27, 1937; presented to the American Mathematical Society, October 30, 1937.

¹ S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 28.