SPHEROIDAL AND BIPOLAR COÖRDINATES

By H. Bateman

1. The relations between the different coördinates. Let $x=w \cos \phi$, $y=w \sin \phi$, then if

$$
\begin{align*}
& z=r \cos \theta=k u v=k S \operatorname{sh} \sigma, \quad u \geqq 1, \quad-1 \leqq v \leqq 1, \tag{1.1}\\
& w=r \sin \theta=k\left(u^{2}-1\right)^{\frac{1}{2}}\left(1-v^{2}\right)^{\frac{3}{2}}=k S \sin \tau, \tag{1.2}\\
& k(u-v)=R, \quad k(u+v)=R^{\prime}, \quad S(\operatorname{ch} \sigma-\cos \tau)=1, \tag{1.3}\\
& (u-v) e^{\sigma}=u+v, \quad\left(u^{2}-v^{2}\right) \cos \tau=u^{2}+v^{2}-2, \tag{1.4}\\
& r^{2}=k^{2}\left(u^{2}+v^{2}-1\right) . \tag{1.5}
\end{align*}
$$

It is usual to call (r, θ, ϕ) the spherical polar coördinates, (z, w, ϕ) the cylindrical coördinates, (u, v, ϕ) the spheroidal coördinates and (σ, τ, ϕ) the bipolar coordinates of the point P whose rectangular coördinates are (x, y, z).

For a second point P_{0} whose rectangular coördinates are (x_{0}, y_{0}, z_{0}), quantities $u_{0}, v_{0}, w_{0}, \theta_{0}, \phi_{0}, \sigma_{0}, \tau_{0}, R_{0}, R_{0}^{\prime}, S_{0}$ may be defined by similar equations with a constant k_{0} which may or may not be different from k. We shall, however, be interested in a function $G\left(x, y, z, x_{0}, y_{0}, z_{0}\right)$ which is harmonic when considered as a function of x, y, z and also when considered as a function of x_{0}, y_{0}, z_{0}. For reasons of symmetry it will be convenient in this case to take $k_{0}=k$.
2. The standard spheroidal harmonics. It is well known that Laplace's equation has the simple solutions

$$
P_{n}^{m}(u) P_{n}^{m}(v) e^{i m \phi}, \quad Q_{n}^{m}(u) P_{n}^{m}(v) e^{i m \phi}
$$

where $P_{n}^{m}(u)$ and $Q_{n}^{m}(u)$ are associated Legendre functions.
In the case of symmetry about the axis of z the simple solutions become

$$
P_{n}(u) P_{n}(v) \quad \text { and } \quad Q_{n}(u) P_{n}(v)
$$

A series of solutions of the second type is particularly useful for the representation of a potential function in the space outside a prolate spheroid whose foci are at the points with rectangular coördinates $(0,0, k),(0,0,-k)$, respectively. This leads to the consideration of Neumann series of type

$$
\begin{equation*}
f(u)=\sum_{n=0}^{\infty}(2 n+1) c_{n} Q_{n}(u) \tag{2.1}
\end{equation*}
$$

Such a series is known to converge in the region of the complex u-plane that lies outside an ellipse with the points $+k$ and $-k$ as foci, when $f(u)$ is an analytic

Received July 25, 1937 and August 27, 1937; in revised form October 30, 1937.

