NON-*n***-ALTERNATING TRANSFORMATIONS**

BY D. W. HALL AND G. E. SCHWEIGERT

Let A and B be compact metric spaces and T(A) = B a single-valued continuous transformation. We shall say that T is *non-n-alternating* provided that, for any point x of B for which there exists a cutting K of $A - T^{-1}(x)$ consisting of at most n points, there is no point y of B such that $T^{-1}(y)$ intersects both sets of the separation $A - (T^{-1}(x) + K) = A_1 + A_2$. If K is the null set, this is the definition of a non-alternating transformation.¹ Consequently, this type of transformation is non-alternating; in fact, we have the following characterization:

THEOREM I. A necessary and sufficient condition that a single-valued continuous transformation T(A) = B be non-n-alternating is that T be non-alternating on the complement of every subset of A consisting of at most n points.

Proof. Let x and y be points of B and K any subset of A consisting of at most n points. If $T^{-1}(x) \cdot (A - K)$ separates² $T^{-1}(y) \cdot (A - K)$ in A - K, i.e., if $(A - K) - T^{-1}(x) \cdot (A - K) = A_1 + A_2$, $T^{-1}(y) \cdot (A - K) \cdot A_i \neq 0$ (i = 1, 2), then this separation may be written in the form $(A - T^{-1}(x)) - K = A_1 + A_2$. Hence K separates $T^{-1}(y)$ in $A - T^{-1}(x)$, contrary to the definition of non-n-alternating. Thus the condition is necessary.

To establish the sufficiency, we notice that if there exist two points x, y in B and a cutting K of $A - T^{-1}(x)$ consisting of at most n points such that $T^{-1}(y)$ intersects both the sets A_1 and A_2 of the separation $A - (T^{-1}(x) + K) = A_1 + A_2$, then $(A - K) - T^{-1}(x) \cdot (A - K) = A_1 + A_2$ and therefore $T^{-1}(y) \cdot (A - K)$ is separated by $T^{-1}(x) \cdot (A - K)$ in A - K. Consequently, T is not non-alternating on A - K. This proves the sufficiency.

LEMMA. If T(A) = B is non-n-alternating, B is non-degenerate, $y \in B$, and two points of $T^{-1}(y)$ are separated in A by a cutting K consisting of $k \leq n + 1$ points, then k = n + 1 and T(K) = y.

Proof. If $k \leq n$, then T is non-alternating on the complement of K, by Theorem I. But this is impossible since $T^{-1}(y)$ intersects two components of this complementary set. Thus k = n + 1. If $T(K) \neq y$, there exists a point p in K such that $T(p) \neq y$. Then the set of n points (K - p) separates $T^{-1}(y)$ in $A - T^{-1}(T(p))$, contrary to the fact that T is non-n-alternating. Therefore, T(K) = y.

One consequence of this lemma, namely, the fact that a point of order not

Received June 12, 1937.

¹See G. T. Whyburn, Non-alternating transformations, American Journal of Mathematics, vol. 56 (1934), pp. 294-302.

² If L and M are subsets of N, we say that L "separates" M in N provided M is contained in N - L and $N - L = N_1 + N_2$, where $N_1 \overline{N}_2 = 0 = \overline{N}_1 N_2$ and $MN_1 \neq 0 \neq MN_2$.