NON- n-ALTERNATING TRANSFORMATIONS

By D. W. Hall and G. E. Schweigert

Let A and B be compact metric spaces and $T(A)=B$ a single-valued continuous transformation. We shall say that T is non-n-alternating provided that, for any point x of B for which there exists a cutting K of $A-T^{-1}(x)$ consisting of at most n points, there is no point y of B such that $T^{-1}(y)$ intersects both sets of the separation $A-\left(T^{-1}(x)+K\right)=A_{1}+A_{2}$. If K is the null set, this is the definition of a non-alternating transformation. ${ }^{1}$ Consequently, this type of transformation is non-alternating; in fact, we have the following characterization:

Theorem I. A necessary and sufficient condition that a single-valued continuous transformation $T(A)=B$ be non-n-alternating is that T be non-alternating on the complement of every subset of A consisting of at most n points.

Proof. Let x and y be points of B and K any subset of A consisting of at most n points. If $T^{-1}(x) \cdot(A-K)$ separates ${ }^{2} T^{-1}(y) \cdot(A-K)$ in $A-K$, i.e., if $(A-K)-T^{-1}(x) \cdot(A-K)=A_{1}+A_{2}, T^{-1}(y) \cdot(A-K) \cdot A_{i} \neq 0$ ($i=1,2$), then this separation may be written in the form $\left(A-T^{-1}(x)\right)-K=$ $A_{1}+A_{2}$. Hence K separates $T^{-1}(y)$ in $A-T^{-1}(x)$, contrary to the definition of non- n-alternating. Thus the condition is necessary.

To establish the sufficiency, we notice that if there exist two points x, y in B and a cutting K of $A-T^{-1}(x)$ consisting of at most n points such that $T^{-1}(y)$ intersects both the sets A_{1} and A_{2} of the separation $A-\left(T^{-1}(x)+K\right)=$ $A_{1}+A_{2}$, then $(A-K)-T^{-1}(x) \cdot(A-K)=A_{1}+A_{2}$ and therefore $T^{-1}(y) \cdot(A-K)$ is separated by $T^{-1}(x) \cdot(A-K)$ in $A-K$. Consequently, T is not non-alternating on $A-K$. This proves the sufficiency.

Lemma. If $T(A)=B$ is non-n-alternating, B is non-degenerate, $y \in B$, and two points of $T^{-1}(y)$ are separated in A by a cutting K consisting of $k \leqq n+1$ points, then $k=n+1$ and $T(K)=y$.

Proof. If $k \leqq n$, then T is non-alternating on the complement of K, by Theorem I. But this is impossible since $T^{-1}(y)$ intersects two components of this complementary set. Thus $k=n+1$. If $T(K) \neq y$, there exists a point p in K such that $T(p) \neq y$. Then the set of n points $(K-p)$ separates $T^{-1}(y)$ in $A-T^{-1}(T(p))$, contrary to the fact that T is non- n-alternating. Therefore, $T(K)=y$.

One consequence of this lemma, namely, the fact that a point of order not
Received June 12, 1937.
${ }^{1}$ See G. T. Whyburn, Non-alternating transformations, American Journal of Mathematics, vol. 56 (1934), pp. 294-302.
${ }^{2}$ If L and M are subsets of N, we say that L "separates" M in N provided M is contained in $N-L$ and $N-L=N_{1}+N_{2}$, where $N_{1} \bar{N}_{2}=0=\bar{N}_{1} N_{2}$ and $M N_{1} \neq 0 \neq M N_{2}$.

