POLAR CORRESPONDENCE WITH RESPECT TO A CONVEX REGION

By Fritz John

We denote as polar correspondence (abbreviated P.C.) with respect to a convex region R in projective n-dimensional space π_{n} any one-to-one correspondence of the points of R and the hyperplanes outside R. The study o such a correspondence is essentially the study of a contragredient vector with special consideration of the convexity of the domain of definition. In $\S 1$ of this paper the representation of a P.C. in homogeneous coördinates is discussed. A P.C. is called positive if a point and its polar plane are not separated by any other point and its polar plane. In $\S 2$ it is proved that every positive P.C. is continuous. §§3-4 deal with symmetric P.C.'s; a P.C. is called symmetric if in the neighbourhood of every point P it is approximated by an ordinary polar correspondence with respect to a quadric, denoted as the tangential quadric in P. A positive symmetric P.C. may be generated by a convex hypersurface in $(n+1)$-dimensional space π_{n+1} in such a way that the line joining any point Q of the surface to a fixed point of π_{n+1} and the tangential plane in Q intersect π_{n} in a point and its polar respectively.

In the remainder of the paper a general class of P.C.'s is discussed, which are generated by continuous positive mass distributions on R. Given any hyperplane p outside R, the pole of p shall be that point which becomes the center of mass of R with the given mass distribution, in case p is chosen as plane at infinity. In §4 it is proved that a P.C. generated in this way is always positive and symmetric. In §§5-6 it is shown that the tangential quadric at a point P is identical with Legendre's ellipsoid of inertia of R if the polar of P is plane at infinity. Moreover, some inequalities involving R and its tangential quadrics are given. ${ }^{1}$

1. Let R be an open convex region in projective n-dimensional space π_{n}; i.e., an open set with the following properties:
(1) If P and Q are points of R, one of the two straight line segments bounded by P and Q belongs to R;
(2) If S denotes the set of points which are neither points of R nor boundary points of R, there is at least one hyperplane in S.
Definition. A one-to-one correspondence between the points of R and
[^0]
[^0]: Received October 23, 1936.
 ${ }^{1}$ I am indebted to the referee for pointing out that the methods used in §1 are closely related to those used by Steinitz in his paper Bedingt konvergente Reihen und konvexe Systeme in Crelle's Journal; cf. in particular vol. 146, p. 32 et seq., where Steinitz deals with convex regions in projective space. Our sets ρ and $\bar{\rho}$ appear there as number sets A and $-A$, and theorems corresponding to our Theorems 1.7 and 1.8 are given.

