ON THE POISSON SUMMABILITY OF FOURIER SERIES
By NorMaN LEVINSON
1. Let f(x) be a Lebesgue integrable function of period 2, and let
o@) =fly +2) +fly — 2) — 2s.

It is well known that if
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for n > m, where (1.1) is the n-th Riesz mean of the Fourier series for f(z) at
z = y.

In his conversation class, Hardy carried this relation over to Poisson sum-
mability of Fourier series by proving in a very simple manner that
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implies the Poisson summability of the Fourier series of f(x) at the point z = y,

and conjectured that
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also implies the P summability for b > 0. We shall show this to be the case.
We shall also show that there is another exponential kernel exp [— (z/¢)'*?],
similarly related to P summability.

Our theorems are

TaEOREM 1. Let E(m, o) represent
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where ¢(x) is defined as above. Then E(n, &) forn > mand a = 0, or E(m, a) for
a > 0 implies P(m), while P(m) implies E(n, &) for m > n.
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