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1. Introduction. We generalize to the case of n complex variables and one
real variable a theorem of Severi! regarding analytic continuation, over a limited
domain? in the (2n 4 1)-space of the variables, of a function given analytic near
the boundary B. The theorem states that if B is connected the continuation
is possible. Severi proves the theorem only for the case that » = 1 and the
domain is of simple type. We remove all restrictions as to simplicity of the
domain and its boundary.

The similar theorem for a region in the 2n-space of n > 1 complex variables is
Osgood’s® extension of a theorem of Hartogs.® Because of certain geometric
difficulties which seem not to be fully met in Osgood’s proof, we give a detailed
proof of this theorem. The proof applies without essential modification to the
case of meromorphic continuation.®

As an application, we prove in the case of n complex variables that if the con-
nected boundary of a limited domain in the space undergoes an analytic homeo-
morphism with non-vanishing jacobian, the transformation can be continued
analytically over the domain to yield an analytic homeomorphism of the domain
and its boundary (Theorem 4.IT). A somewhat similar result is obtained for the
case of one real and n complex variables (Theorem 4.I1T).

2. Functions of n complex variables. The following is the Osgood form
of the theorem of Hartogs.
TaeoreM 2.1.  Let R be a limited domain with connected boundary B in the 2n-
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