AUTOMORPHISMS OF THE PANTS COMPLEX

DAN MARGALIT

In loving memory of my mother, Batya

1. Introduction

In the theory of mapping class groups, "curve complexes" assume a role similar to the one that buildings play in the theory of linear groups. Ivanov, Korkmaz, and Luo showed that the automorphism group of the curve complex for a surface is generally isomorphic to the extended mapping class group of the surface. In this paper, we show that the same is true for the pants complex.

Throughout, S is an orientable surface whose Euler characteristic $\chi(S)$ is negative, while $\Sigma_{g, b}$ denotes a surface of genus g with b boundary components. Also, $\operatorname{Mod}(S)$ means the extended mapping class group of S (the group of homotopy classes of self-homeomorphisms of S).

The pants complex of S , denoted $C_{P}(S)$, has vertices representing pants decompositions of S, edges connecting vertices whose pants decompositions differ by an elementary move, and 2 -cells representing certain relations between elementary moves (see Sec. 2). Its 1-skeleton $C_{P}^{1}(S)$ is called the pants graph and was introduced by Hatcher and Thurston. We give a detailed definition of the pants complex in Section 2.

Brock proved that $C_{P}^{1}(S)$ models the Teichmüller space endowed with the WeilPetersson metric, $\mathscr{T}_{W P}(S)$, in that the spaces are quasi-isometric (see [1]). Our results further indicate that $C_{P}^{1}(S)$ is the "right" combinatorial model for $\mathscr{T}_{W P}(S)$, in that Aut $C_{P}^{1}(S)$ (the group of simplicial automorphisms of $C_{P}^{1}(S)$) is shown to be $\operatorname{Mod}(S)$. This is in consonance with the result of Masur and Wolf that the isometry group of $\mathscr{T}_{W P}(S)$ is $\operatorname{Mod}(S)($ see [10]).

There is a natural action of $\operatorname{Mod}(S)$ on $C_{P}^{1}(S)$; we prove that all automorphisms of $C_{P}^{1}(S)$ are induced by $\operatorname{Mod}(S)$. The results of this paper can be summarized as follows:

$$
\operatorname{Aut} C_{P}(S) \cong \operatorname{Aut} C_{P}^{1}(S) \cong \operatorname{Mod}(S)
$$

for most surfaces S.

