INTERIOR REGULARITY OF THE COMPLEX MONGE-AMPÈRE EQUATION IN CONVEX DOMAINS

ZBIGNIEW BŁOCKI

0. Introduction. For C^2 -smooth plurisubharmonic (psh) functions, we consider the complex Monge-Ampère equation

$$\det\left(u_{i\,\overline{i}}\right) = \psi,\tag{0.1}$$

where $u_{i\bar{j}} = \partial^2 u / \partial z_i \partial \overline{z}_j$, i, j = 1, ..., n. The main result of this paper is the following theorem.

THEOREM A. Let Ω be a bounded, convex domain in \mathbb{C}^n . Assume that ψ is a C^{∞} function in Ω such that $\psi > 0$ and $|D\psi^{1/n}|$ is bounded. Then there exists a C^{∞} -psh solution u of (0.1) in Ω with $\lim_{z\to\partial\Omega} u(z) = 0$.

The theory of fully nonlinear elliptic operators of second order can be applied to the operator $(\det(u_{i\overline{j}}))^{1/n}$. It follows in particular that if u is strictly psh and $C^{2,\alpha}$ for some $\alpha \in (0, 1)$, then $\det(u_{i\overline{j}}) \in C^{k,\beta}$ implies $u \in C^{k+2,\beta}$, where k = 1, 2, ...,and $\beta \in (0, 1)$ (see, e.g., [9, Lemma 17.16]). Therefore, to prove Theorem A, it is enough to show existence of a solution that is $C^{2,\alpha}$ in every $\Omega' \subseteq \Omega$, where $\alpha \in (0, 1)$ depends on Ω' . We obtain this assuming only that $\psi^{1/n}$ is positive and Lipschitz in Ω (see Theorem 4.1).

In a special case of a polydisc, we also allow nonzero boundary values.

THEOREM B. Let P be a polydisc in \mathbb{C}^n . Assume that ψ is a C^{∞} function in P such that $\psi > 0$ and $|D^2\psi^{1/n}|$ is bounded. Let f be a $C^{1,1}$ function on the boundary ∂P such that f is subharmonic on every analytic disc embedded in ∂P . Then (0.1) has a C^{∞} -psh solution in P such that $\lim_{\zeta \to z} u(\zeta) = f(z)$ for $z \in \partial P$.

In Section 5, we explain what we precisely mean by saying that a function is $C^{1,1}$ on a (nonsmooth) set ∂P . In particular, all functions that are extendable to a $C^{1,1}$ function in an open neighborhood of ∂P are allowed.

Usually, the Dirichlet problem for the complex Monge-Ampère operator is considered on smooth, strictly pseudoconvex domains in \mathbb{C}^n . For these, the existence of (weak) continuous solutions was proved in [1], whereas smooth solutions were obtained, for example, in [5], [10], and [11]. Here, however, we do not assume any

167

Received 2 June 1999. Revision received 2 February 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 32W20; Secondary 35J60.

Author's work supported in part by the Committee for Scientific Research grant number 2 PO3A 003 13.