CORRECTION TO "HÖLDER FOLIATIONS"

CHARLES PUGH, MICHAEL SHUB, AND AMIE WILKINSON

A. Török has pointed out to us the need for a better proof of [1, Theorem B]. Accordingly, the first two full paragraphs on [1, p. 539] should be replaced with the following argument.

We are trying to show that the subfoliation of the center unstable leaves by the strong unstable leaves is of class C^1 . Let W denote the disjoint union of the center unstable leaves:

$$W = \bigsqcup W^{cu}(p).$$

It is a nonseparable manifold of class C^1 . Partial hyperbolicity implies that its tangent bundle $TW = E^{cu}$ is continuous. The restriction of TM to W is a C^1 bundle T_WM that contains the C^0 subbundle TW. Since f is a diffeomorphism of class C^2 , the tangent map

$$Tf: T_WM \longrightarrow T_WM$$

is a C^1 bundle isomorphism. As in the proof of Theorem A (see [1, pp. 527–538]), approximate E^u , E^{cs} by smooth bundles \tilde{E}^u , \tilde{E}^{cs} , and express Tf with respect to the splitting $TM = \tilde{E}^u \oplus \tilde{E}^{cs}$ as

$$\begin{pmatrix} A & B \\ C & K \end{pmatrix}.$$

Let $\widetilde{\mathcal{P}}(1)$ be the bundle over W whose fiber at p is the set of linear maps $P: \widetilde{E}_p^u \to \widetilde{E}_p^{cs}$ such that $||P|| \leq 1$. The linear graph transform sends P to

$$\Gamma_{Tf}(P) = (C + KP) \circ (A + BP)^{-1}.$$

It is a bundle map that covers the identity on W, contracts fibers by approximately $||K|| ||A^{-1}|| \doteq ||T^c f|| / m(T^u f)$, and contracts the base, at worst, by approximately $m(A) \doteq m(T^c f)$. The unique invariant section $p \mapsto P_p$ of $\widetilde{\mathcal{P}}(1)$ of Γ_{Tf} has graph $P_p = E_p^u$. Center bunching implies that

(fiber contraction) (base contraction)⁻¹
$$\doteq \frac{\|T^c f\|}{m(T^u f)} (m(T^c f))^{-1} < 1.$$

Received 16 August 1999.

2000 Mathematics Subject Classification. Primary 37D30.

105