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THE RAMANUJAN PROPERTY FOR REGULAR
CUBICAL COMPLEXES

BRUCE W. JORDANand RON LIVNÉ

0. Introduction. Ramanujan graphs were defined by Lubotzky, Phillips, and Sar-
nak in [15] as regular graphs whose adjacency matrices, or their Laplacians, have
eigenvalues satisfying some “best possible” bounds. Such graphs possess many in-
teresting properties. In this paper, we give a higher-dimensional generalization of
this theory toregular cubical complexes. By definition, (�r = (r1, . . . , rg))-regular
complexes are cell complexes locally isomorphic to the (ordered) product ofg reg-
ular trees, with thej th tree of regularityrj ≥ 3. Each cell is ani-cube (i.e., an
i-dimensional cube) with 0≤ i ≤ g. Throughout each(g−1)-cube, exactly one of
the tree factors, say thej th one, is constant, and there arerj g-cubes passing through
it. Wheng = 1, we simply have anr-regular graph.
The spaces ofi-cochainsCi(X) (with real or complex coefficients) of a finite

cubical complexX are inner product vector spaces with an orthonormal basis cor-
responding to the characteristic functions of thei-cells. There are partial boundary
operators∂j = ∂j,i : Ci(X)→ Ci+1(X) for 1≤ j ≤ g. With these we get the adjoint
operators∂∗j = ∂∗j,i : Ci+1(X)→ Ci(X) and, hence, the partial Laplacians

�j =�j,i = ∂∗j,i∂j,i+∂j,i−1∂∗j,i−1 : Ci(X)−→ Ci(X).

Each�j,i is a selfadjoint nonnegative operator. Fori fixed they all commute and one
gets a combinatorial harmonic theory (cf. [21]).
WhenX is infinite, these notions extend to L2-cochains. WhenX = � is an

�r = (r1, . . . , rg)-regular product of trees, Kesten’s 1-dimensional results (see [13])
extend, and we get that eachλ in the spectrum ofrj Id−�j acting on L2-cochains of
� satisfies|λ| ≤ 2√rj −1. As in the 1-dimensional case, we say that a(r1, . . . , rg)-
regular cubical complexX is Ramanujan if the eigenvalues ofrj Id−�j on X are
±rj or if they satisfy the same properties for eachj .
One justification for this definition in the 1-dimensional case is the Alon-Boppana

result, which shows that these bounds are essentially the best possible ones for the
trivial local system. We generalize this result under a natural hypothesis. Another par-
allel with the 1-dimensional case is that whenX is finite, connected, and uniformized
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