KIRILLOV THEORY FOR GL₂(②) WHERE ③ IS A DIVISION ALGEBRA OVER A NON-ARCHIMEDEAN LOCAL FIELD

DIPENDRA PRASAD AND A. RAGHURAM

CONTENTS

1.	Introduction and notation	19
	1.1. Introduction	19
	1.2. Notation	22
	1.3. Basic structure theory of $GL_2(\mathfrak{D})$	23
2.	Jacquet modules of principal series representations	24
3.	Kirillov theory	25
4.	New forms	30
	4.1. New forms for principal series representations	32
	4.2. New forms for spherical representations in the Kirillov model	34
5.	Supercuspidal representations	34
6.	Shalika model	42

1. Introduction and notation

1.1. Introduction. The aim of this work is to develop Kirillov theory for irreducible admissible representations of $GL_2(\mathfrak{D})$ for a division algebra \mathfrak{D} over a non-Archimedean local field F. We apply this theory to develop a theory of new forms for such representations.

The Kirillov theory developed here is in close analogy with the case of $GL_2(F)$. We recall (see Jacquet and Langlands [12]) that the Kirillov model $K(\pi)$ of an irreducible admissible representation π of $GL_2(F)$ consists of a certain space of locally constant functions on F^* , which vanish outside compact subsets of F, and contains $C_c^{\infty}(F^*)$ with codimension at most 2. The action of B, the standard Borel subgroup consisting of upper triangular matrices in $GL_2(F)$, on $K(\pi)$ is given by

$$\left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} f\right)(x) = \omega_{\pi}(d)\psi_{F}(d^{-1}xb)f(d^{-1}xa),$$

where ψ_F is a fixed nontrivial additive character of F, and ω_π is the central quasi character of π . The action of $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, the Weyl group element, is given in terms of Fourier transforms. The explicit formula for this involves the ϵ -factors (actually γ -factors) of π twisted by characters of F^* .

Received 8 March 1999. Revision received 11 November 1999. 2000 *Mathematics Subject Classification*. Primary 22E50; Secondary 22E35, 11S37, 11S45.