HOLOMORPHIC CURVES AND HAMILTONIAN SYSTEMS IN AN OPEN SET WITH RESTRICTED CONTACT-TYPE BOUNDARY

DAVID HERMANN

CONTENTS

1.	Introduction and main results	335
2.	Open sets with restricted contact-type boundary	340
	2.1. Definitions and notation	
	2.2. Gromov width	342
	2.3. Pseudoconvexity	344
3.	Symplectic homology	347
	3.1. Trajectory spaces, compactness, and transversality	347
	3.2. Floer homology and its functorial properties	350
4.	Local symplectic homology for RCT open sets	354
	4.1. The cofinal family	354
	4.2. Generic perturbation	357
	4.3. Description of the symplectic homology	359
5.	Proof of the main results	361
	5.1. The Floer-Hofer capacity	361
	5.2. The minmax characterizations	363
	5.3. Comparison with the displacement energy	365
	5.4. Construction of a holomorphic curve	366

1. Introduction and main results. Throughout this paper, we fix an integer $n \ge 2$ and consider the standard symplectic space $(\mathbb{R}^{2n}, \omega = d\lambda_0)$, with $n \ge 2$ and

$$\lambda_0 = \frac{1}{2} \sum_{k=1}^n x_k \wedge dy_k - y_k \wedge dx_k. \tag{1.1}$$

We identify \mathbb{R}^{2n} with \mathbb{C}^n , setting $z_k = x_k + iy_k$. To each (time-dependent) Hamiltonian $H \in \mathcal{H}_t = C^{\infty}(S^1 \times \mathbb{C}^n)$, we can associate a Hamiltonian vector field given by

$$i_{X_H}\omega = -dH(t,\cdot),\tag{1.2}$$

where $i_{X_H}\omega$ denotes the contraction of ω by X_H . The flow ϕ_t^H of X_H is called the Hamiltonian flow of H and is a symplectic isotopy. We also denote by $\mathfrak D$ the group

Received 20 November 1998. Revision received 16 August 1999. 2000 *Mathematics Subject Classification*. Primary 53D40; Secondary 32Q65.