QUANTUM DETERMINANTAL IDEALS

K. R. GOODEARL AND T. H. LENAGAN

Introduction. Fix a base field k. The quantized coordinate ring of $n \times n$ matrices over k, denoted by $\mathbb{O}_q(M_n(k))$, is a deformation of the classical coordinate ring of $n \times n$ matrices, $\mathbb{O}(M_n(k))$. As such, it is a k-algebra generated by n^2 indeterminates X_{ij} , for $1 \le i, j \le n$, subject to relations which we state in (1.1). Here, q is a nonzero element of the field k. When q = 1, we recover $\mathbb{O}(M_n(k))$, which is the commutative polynomial algebra $k[X_{ij}]$. The algebra $\mathbb{O}_q(M_n(k))$ has a distinguished element D_q , the *quantum determinant*, which is a central element. Two important algebras $\mathbb{O}_q(\operatorname{GL}_n(k))$ and $\mathbb{O}_q(\operatorname{SL}_n(k))$ are formed by inverting D_q and setting $D_q = 1$, respectively.

The structures of the primitive and prime ideal spectra of the algebras $\mathbb{O}_q(\mathrm{GL}_n(k))$ and $\mathbb{O}_q(\mathrm{SL}_n(k))$ have been investigated recently (see, for example, [2], [7], and [10]). Results obtained in these investigations can be pulled back to partial results about the primitive and prime ideal spectra of $\mathbb{O}_q(M_n(k))$. However, these techniques give no information about the closed subset of the spectrum determined by D_q . In this paper, we begin the study of this portion of the spectrum.

In the classical commutative setting, much attention has been paid to *determinantal ideals*: that is, the ideals generated by the minors of a given size. In particular, these are special prime ideals of $O(M_n(k))$ containing the determinant. Moreover, there are interesting geometrical and invariant theoretical reasons for the importance of these ideals (see, for example, [4]). In order to put our results into context, it may be useful to review some highlights of the commutative theory.

Let $M_{l,m}(k)$ denote the algebraic variety of $l \times m$ matrices over k. For $t \le n$, the general linear group $GL_t(k)$ acts on $M_{n,t}(k) \times M_{t,n}(k)$ via

$$g \cdot (A, B) := (Ag^{-1}, gB).$$

Matrix multiplication yields a map

$$\mu: M_{n,t}(k) \times M_{t,n}(k) \longrightarrow M_n(k),$$

the image of which is the set of matrices with rank at most t.

Received 1 March 1998. Revision received 1 April 1999.

2000 Mathematics Subject Classification. Primary 16P40, 16W30, 16W35, 16S15, 13C40, 20G42. Goodearl and Lenagan partially supported by National Science Foundation grant number DMS-9622876 and NATO Collaborative Research grant number 960250.

165