ORTHONORMAL BASES OF EXPONENTIALS FOR THE *n*-CUBE

JEFFREY C. LAGARIAS, JAMES A. REEDS, AND YANG WANG

1. Introduction. A compact set Ω in \mathbb{R}^n of positive Lebesgue measure is a spectral set if there is some set of exponentials

$$\mathcal{B}_{\Lambda} := \left\{ e^{2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda \right\},\tag{1.1}$$

which when restricted to Ω gives an orthogonal basis for $L^2(\Omega)$, with respect to the inner product

$$\langle f, g \rangle_{\Omega} := \int_{\Omega} \overline{f(x)} g(x) dx.$$
 (1.2)

Any set Λ that gives such an orthogonal basis is called a spectrum for Ω . Only very special sets Ω in \mathbb{R}^n are spectral sets. However, when a spectrum exists, it can be viewed as a generalization of Fourier series, because for the *n*-cube $\Omega = [0, 1]^n$ the spectrum $\Lambda = \mathbb{Z}^n$ gives the standard Fourier basis of $L^2([0, 1]^n)$.

The main object of this paper is to relate the spectra of sets Ω to tilings in Fourier space. We develop such a relation for a large class of sets and apply it to geometrically characterize all spectra for the n-cube $\Omega = [0, 1]^n$.

THEOREM 1.1. The following conditions on a set Λ in \mathbb{R}^n are equivalent.

- (i) The set $\mathfrak{B}_{\Lambda} = \{e^{2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda\}$ when restricted to $[0, 1]^n$ is an orthonormal basis of $L^2([0, 1]^n)$.
- (ii) The collection of sets $\{\lambda + [0,1]^n : \lambda \in \Lambda\}$ is a tiling of \mathbb{R}^n by translates of unit cubes.

This result was conjectured by Jorgensen and Pedersen [6], who proved it in dimensions $n \le 3$. We note that in high dimensions there are many "exotic" cube tilings. There are aperiodic cube tilings in all dimensions $n \ge 3$, while in dimensions $n \ge 10$ there are cube tilings in which no two cubes share a common (n-1)-face; see Lagarias and Shor [9].

In Theorem 1.1, the n-cube $[0, 1]^n$ appears in both conditions (i) and (ii), but in functorially different contexts. The n-cube in (i) lies in the space domain \mathbb{R}^n while the n-cube in (ii) lies in the Fourier domain $(\mathbb{R}^n)^*$, so they transform differently under linear change of variables. Thus Theorem 1.1 is equivalent to the following result.

Received 15 June 1999. Revision received 24 August 1999. 2000 *Mathematics Subject Classification*. Primary 42B05; Secondary 11K70, 47A13, 52C22. Wang partially supported by National Science Foundation grant number DMS-97-06793.