RIEMANN-ROCH FOR EQUIVARIANT CHOW GROUPS

DAN EDIDIN and WILLIAM GRAHAM

1. Introduction. The purpose of this paper is to prove an equivariant RiemannRoch theorem for schemes or algebraic spaces with an action of a linear algebraic group G. For a G-space X, this theorem gives an isomorphism

$$
\left.\tau^{G}: G^{G}(X) \longrightarrow \widehat{G^{G}(X}\right)_{\mathbb{Q}} \xrightarrow{\simeq} \prod_{i=0}^{\infty} C H_{G}^{i}(X)_{\mathbb{Q}}
$$

Here $\widehat{G^{G}(X)}$ is the completion of the equivariant Grothendieck group of coherent sheaves along the augmentation ideal of the representation ring $R(G)$, and the groups $\mathrm{CH}_{G}^{i}(\mathrm{X})$ are the equivariant Chow groups defined in [EG2]. The map τ^{G} has the same functorial properties as the nonequivariant Riemann-Roch map of [BFM] and [F, Theorem 18.3]. If G acts freely, then τ^{G} can be identified with the nonequivariant Todd class map $\tau_{X / G}: G(X / G) \rightarrow C H^{*}(X / G)_{\mathbb{Q}}$.

The key to proving this isomorphism is a geometric description of completions of the equivariant Grothendieck group (see Theorem 2.1). Aside from Riemann-Roch, this result has some purely K-theoretic applications. In particular, we prove (see Corollary 6.2) a conjecture of Köck (in the case of regular schemes over fields) and extend to arbitrary characteristic a result of Segal on representation rings (see Corollary 6.1).

For actions with finite stabilizers, the equivariant Riemann-Roch theorem is more precise; it gives an isomorphism between a localization of $G^{G}(X)_{\mathbb{Q}}$ and $\oplus C H_{G}^{i}(X)_{\mathbb{Q}}$ (see Corollary 5.1). This formulation enables us to give a simple proof of a conjecture of Vistoli (see Corollary 5.2). If G is diagonalizable, then we can express $G^{G}(X)$ in terms of the equivariant Chow groups (an unpublished result of Vistoli; cf. [To] also). Actions with finite stabilizers are particularly important because quotients by these actions arise naturally in geometric invariant theory. In a subsequent paper, we will use these results to express the Todd class map for a quotient of such an action in terms of equivariant Todd class maps, generalizing Riemann-Roch formulas of Atiyah and Kawasaki.

The main tool of this paper is the approximation of the total space of the classifying bundle $E G$ by an open subset U of a representation V, where G acts freely on U and where $V-U$ is a finite union of linear subspaces. Approximations to $E G$ by open sets

[^0]
[^0]: Received 8 January 1999. Revision received 20 August 1999.
 1991 Mathematics Subject Classification. Primary 14C40, 14L30; Secondary 19E15.
 Edidin's work partially supported by National Security Agency grant number MDA904-97-1-0030 and the University of Missouri Research Board.

 Graham's work partially supported by the National Science Foundation.

