BMO FOR NONDOUBLING MEASURES

J. MATEU, P. MATTILA, A. NICOLAU, and J. OROBITG

1. Introduction. The Calderón-Zygmund theory of singular integrals has been traditionally considered with respect to a measure satisfying a doubling condition. Recently, Tolsa [T] and, independently, Nazarov, Treil, and Volberg [NTV] have shown that this standard doubling condition was not really necessary. Likewise, in the homogeneous spaces setting, functions of bounded mean oscillation, BMO, and its predual H^{1}, the atomic Hardy space, play an important role in the theory of singular integrals.

This note is an attempt to find good substitutes for the spaces BMO and H^{1} when the underlying measure is nondoubling. Our hope was that we would have been able to prove some results of Tolsa, Nazarov, Treil, and Volberg, via BMO- H^{1} interpolation, but in this respect we were unsuccessful.

Let μ be a nonnegative Radon measure on \mathbb{R}^{n}. A function $f \in L_{\mathrm{loc}}^{1}(\mu)$ is said to belong to $\mathrm{BMO}(\mu)$ if the inequality

$$
\begin{equation*}
\int_{Q}\left|f(x)-f_{Q}\right| d \mu(x) \leq C \mu(Q) \tag{1}
\end{equation*}
$$

holds for all cubes Q with sides parallel to the coordinate axes; $f_{Q}=(\mu(Q))^{-1}$ $\int_{Q} f d \mu$ denotes the mean value of f over the cube Q. The smallest bound C for which (1) is satisfied is then taken to be the "norm" of f in this space, and it is denoted by $\|f\|_{*}$.

One says that $\mathrm{BMO}(\mu)$ has the John-Nirenberg property when there exist positive constants c_{1} and c_{2} so that whenever $f \in \mathrm{BMO}(\mu)$, then for every $\lambda>0$ and every cube Q with sides parallel to the coordinate axes, one has

$$
\mu\left(\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right) \leq c_{1} e^{-c_{2} \lambda /\|f\|_{*}} \mu(Q) .
$$

It is well known that if a measure μ is doubling (i.e., there exists a constant $C=C(\mu)$ such that $\mu(2 Q) \leq C \mu(Q)$ for all cubes $Q)$, then it satisfies the John-Nirenberg inequality. We give examples of nonnegative Radon measures on \mathbb{R}^{n} which do not

Received 8 January 1999. Revision received 3 August 1999.
1991 Mathematics Subject Classification. Primary 26B35, 42B25, 46E30.
Mateu, Nicolau, and Orobitg's work partially supported by grant numbers PB98-0872 and PB961183 of the Dirección General de Enseñanza Superior and by grant number 1998 SGR00052 of the Comissió Interdepartamental de Recerca i Innovació Tecnològica.

Mattila gratefully acknowledges the hospitality of the Centre de Recerca Matemàtica at the Universitat Autònoma de Barcelona during the preparation of this work.

