RIGID LOCAL SYSTEMS, HILBERT MODULAR FORMS, AND FERMAT'S LAST THEOREM

HENRI DARMON

CONTENTS

	Frey representations	415
	1.1. Definitions	415
	1.2. Classification: The rigidity method	416
	1.3. Construction: Hypergeometric abelian varieties	419
2.	Modularity	428
	2.1. Hilbert modular forms	428
	2.2. Modularity of hypergeometric abelian varieties	430
	Lowering the level	
	3.1. Ribet's theorem	434
	3.2. Application to $x^p + y^p = z^r$	435
	Torsion points on abelian varieties	

Introduction. Historically, two approaches have been followed to study the classical Fermat equation $x^r + y^r = z^r$. The first, based on cyclotomic fields, leads to questions about abelian extensions and class numbers of $K = \mathbb{Q}(\zeta_r)$ and values of the Dedekind zeta-function $\zeta_K(s)$ at s = 0. Many open questions remain, such as Vandiver's conjecture that r does not divide the class number of $\mathbb{Q}(\zeta_r)^+$. The second approach is based on modular forms and the study of 2-dimensional representations of $Gal(\mathbb{Q}/\mathbb{Q})$. Even though 2-dimensional representations are more subtle than abelian ones, it is by this route that Fermat's last theorem was finally proved (cf. [Fre], [Se2], [Ri2], [W3], and [TW]; or [DDT] for a general overview).

This article examines the equation

$$x^p + y^q = z^r.$$
 (1)

Certain 2-dimensional representations of $Gal(\bar{K}/K)$, where K is the real subfield of a cyclotomic field, emerge naturally in the study of equation (1), giving rise to a blend of the cyclotomic and modular approaches. The special values $\zeta_K(-1)$, which

Received 23 September 1998. Revision received 23 June 1999.

1991 Mathematics Subject Classification. Primary 11G18; Secondary 11D41, 11F80, 11G05.

Author's work partially supported by grants from Natural Sciences and Engineering Research Council of Canada and from Fonds pour la Formation de Chercheurs et l'Aide à la Recherche, and by an Alfred P. Sloan research award.