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Introduction. Historically, two approaches have been followed to study the clas-
sical Fermat equation” + y" = z". The first, based on cyclotomic fields, leads to
guestions about abelian extensions and class numbets=0fQ(¢,) and values of
the Dedekind zeta-functiotk (s) at s = 0. Many open questions remain, such as
Vandiver’s conjecture thatdoes not divide the class number@f{¢,)". The second
approach is based on modular forms and the study of 2-dimensional representations of
Gal(Q/Q). Even though 2-dimensional representations are more subtle than abelian
ones, itis by this route that Fermat’s last theorem was finally proved (cf. [Fre], [SeZ2],
[Ri2], [W3], and [TW]; or [DDT] for a general overview).

This article examines the equation

@

Certain 2-dimensional representations of &alK), where K is the real subfield
of a cyclotomic field, emerge naturally in the study of equation (1), giving rise to a
blend of the cyclotomic and modular approaches. The special vajuesl), which
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