THE GRIFFITHS GROUP OF A GENERAL CALABI-YAU THREEFOLD IS NOT FINITELY GENERATED

CLAIRE VOISIN

1. Introduction. If X is a Kähler variety, the intermediate Jacobian $J^{2k-1}(X)$ is defined as the complex torus

$$J^{2k-1}(X) = H^{2k-1}(X, \mathbb{C}) / F^k H^{2k-1}(X) \oplus H^{2k-1}(X, \mathbb{Z}),$$

where $F^k H^{2k-1}(X)$ is the set of classes representable by a closed form in $F^k A^{2k-1}(X)$, that is, which is locally of the form $\sum_{I,J} \alpha_{I,J} dz_I \wedge d\overline{z}_J$, with |I| + |J| = 2k - 1 and $|I| \ge k$.

Griffiths [9] has defined the Abel-Jacobi map

$$\Phi^k_X: \mathscr{Z}^k_{\hom}(X) \longrightarrow J^{2k-1}(X),$$

where $\mathscr{Z}_{hom}^k(X)$ is the group of codimension k algebraic cycles homologous to zero on X. Using the identification

$$J^{2k-1}(X) = \frac{\left(F^{n-k+1}H^{2n-2k+1}(X)\right)^*}{H_{2n-2k+1}(X,\mathbb{Z})}, \quad n = \dim X$$

given by Poincaré duality, Φ_X^k associates to the cycle $Z = \partial \Gamma$, where Γ is a real chain of dimension 2n - 2k + 1 well defined up to a 2n - 2k + 1-cycle, the element

$$\int_{\Gamma} \in \left(F^{n-k+1} H^{2n-2k+1}(X) \right)^* / H_{2n-2k+1}(X, \mathbb{Z}),$$

which is well defined using the isomorphism

$$F^{n-k+1}H^{2n-2k+1}(X) \cong \frac{F^{n-k+1}A^{2n-2k+1}(X)^c}{dF^{n-k+1}A^{2n-2k}(X)}.$$

If $(Z_t)_{t \in C}$ is a flat family of codimension k algebraic cycles on X parametrized by a smooth irreducible curve C, the map $t \mapsto \Phi_X^k(Z_t - Z_0)$ factors through a homomorphism from the Jacobian J(C) to $J^{2k-1}(X)$, and one can show that the image of this morphism is a complex subtorus of $J^{2k-1}(X)$ whose tangent space is contained in $H^{k-1,k}(X) \subset H^{2k-1}(X, \mathbb{C})/F^k H^{2k-1}(X)$. Defining the subgroup

Received 9 March 1999.

1991 *Mathematics Subject Classification*. Primary 14C25, 14C30, 14M99, 32J25. Author's work partially supported by the project Algebraic Geometry in Europe.

151