ON THE STRUCTURE OF THE SELBERG CLASS, III: SARNAK'S RIGIDITY CONJECTURE

J. KACZOROWSKI AND A. PERELLI

1. Introduction. In this paper we deal with a problem, raised by Peter Sarnak, about rigidity in the Selberg class \mathcal{G} . Roughly speaking, the problem is as follows: Is every continuous one-parameter family $\mathcal{F} = \{F(s; \xi)\}_{\xi \in \mathbb{R}}$ of functions in \mathcal{G} a shifted family, that is,

$$F(s;\xi) = \prod_{j=1}^{k} F_j(s+ih_j(\xi))$$

with $F_j \in \mathcal{G}$ and $h_j(\xi)$ continuous? We need some preliminaries in order to give a precise formulation of the problem and our results. We refer to the survey paper [4] for the basic notation, definitions, and results about \mathcal{G} .

Given a function $F \in \mathcal{G}$, we denote by $a_n(F)$ its *n*th coefficient and write

$$\theta_F = \operatorname{Im} 2 \sum_{j=1}^r \left(\mu_j - \frac{1}{2} \right),$$

where the μ_j appear in the Γ -factors of a functional equation of F(s). We recall that the shift θ_F is an invariant of F(s) (see [4, Section 8]). Moreover, for every entire $F \in \mathcal{S}$ and every $\theta \in \mathbb{R}$, the shifted function $F_{\theta}(s) = F(s+i\theta)$ belongs to \mathcal{S} . We also recall the Selberg orthonormality conjecture, asserting that if $F, G \in \mathcal{S}$ are primitive functions, then

$$\sum_{p \le x} \frac{a_p(F)\overline{a_p(G)}}{p} = \delta_{F,G} \log \log x + O(1) \text{ as } x \longrightarrow \infty, \text{ where } \delta_{F,G} = \begin{cases} 1 & \text{if } F = G, \\ 0 & \text{if } F \neq G. \end{cases}$$

We further recall that under Selberg orthonormality conjecture, \mathcal{G} has unique factorization into primitive functions, the only primitive function with a pole at s = 1 is the Riemann zeta function $\zeta(s)$, and $F_{\theta}(s)$ is a primitive function if $\theta \in \mathbb{R}$ and if $F \in \mathcal{G}$ are primitive and entire (see [4, Section 4]).

We say a primitive function $F \in \mathcal{G}$ is normal if $\theta_F = 0$. Assuming Selberg orthonormality conjecture, we normalize any primitive function $F \in \mathcal{G}$ in the following way:

Received 26 May 1999.

1991 Mathematics Subject Classification. Primary 11M41; Secondary 11M99.

Authors' research partially supported by the State Committee for Scientific Research of Poland (KBN) grant number 2 PO3A 024 17.

529