EXISTENCE AND REGULARITY FOR HIGHER-DIMENSIONAL *H*-SYSTEMS

FRANK DUZAAR AND JOSEPH F. GROTOWSKI

1. Introduction. In this paper we are concerned with the existence and regularity of solutions of the degenerate nonlinear elliptic systems known as H-systems. For a given real-valued function H defined on (a subset of) \mathbb{R}^{n+1} , the associated H-system on a subdomain of \mathbb{R}^n (we generally take the domain to be B, the unit ball) is given by

$$D_{x_i}(|Du|^{n-2}D_{x_i}u) = \sqrt{n^n}(H \circ u)u_{x_1} \times \dots \times u_{x_n}$$

$$\tag{1.1}$$

for a map u from B to \mathbb{R}^{n+1} . (Obviously for (1.1) to make sense classically, we look for $u \in C^2(B, \mathbb{R}^{n+1})$. As we discuss in Section 2, it also makes sense to look for a weak solution $u \in W^{1,n}(B, \mathbb{R}^{n+1})$ to (1.1) under suitable restrictions on H.) Here we use the summation convention, and the cross product $w_1 \times \cdots \times w_n : \mathbb{R}^{n+1} \oplus \cdots \oplus \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is defined by the property that $w \cdot w_1 \times \cdots \times w_n = \det W$ for all vectors $w \in \mathbb{R}^{n+1}$, where W is the $(n+1) \times (n+1)$ matrix whose first row is (w^1, \ldots, w^{n+1}) and whose jth row is $(w^1_{j-1}, \ldots, w^{n+1}_{j-1})$ for $2 \le j \le n+1$.

Equation (1.1) has a natural geometric property; namely, if u fulfills certain additional conditions, then it represents a hypersurface in \mathbb{R}^{n+1} whose mean curvature at the point u(x), for $x \in B$, is given by $H \circ u(x)$. Specifically, a map $u : B \to \mathbb{R}^{n+1}$ is called *conformal* if

$$u_{x_i} \cdot u_{x_j} = \lambda^2(x)\delta_{ij}$$
 on B (1.2)

for some real-valued function λ . If $u \in C^2(B, \mathbb{R}^3)$ is conformal, then it is possible to show that u defines a hypersurface in \mathbb{R}^{n+1} which has mean curvature $H \circ u(x)$ at every *regular point* u(x), meaning a point where $u_{x_1} \times \cdots \times u_{x_n}$ does not vanish. For n=2 this observation is the starting point for all existence results for parametric surfaces of prescribed mean curvature (cf. the references cited below for the Plateau problem). For $n \geq 3$ a derivation can be found in [DuF4, pp. 42 ff.].

We wish to discuss boundary value problems associated with (1.1), and we first consider the case n = 2. Here the map u satisfies the *Plateau boundary condition* for a given rectifiable Jordan curve Γ in \mathbb{R}^3 if

$$u|_{\partial B}$$
 is a homeomorphism from ∂B to Γ . (1.3)

Received 2 October 1998.

1991 Mathematics Subject Classification. Primary 58E15; Secondary 35J50, 35J60, 35J70.