EXTREMAL MANIFOLDS AND HAUSDORFF DIMENSION

H. DICKINSON AND M. M. DODSON

1. Introduction. The recent proof by D. Y. Kleinbock and G. A. Margulis [11] of Sprindžuk's conjecture for smooth nondegenerate manifolds M means that the set $\mathcal{L}_v(M)$ of v-approximable points (this and other terminology is explained below) on M is of zero induced Lebesgue measure. This raises the question of its Hausdorff dimension. Bounds and indeed the exact dimension for manifolds satisfying a variety of arithmetic, geometric, and analytic conditions are known (see [2], [3], [5], [7]). In this paper ubiquity is used to obtain a lower bound for the Hausdorff dimension of a set more general than $\mathcal{L}_v(M)$ for any extremal C^1 manifold M. Hitherto volume estimates that depend on curvature conditions were used to overcome a "small denominators" problem. It turns out, however, that extremality, when combined with Fatou's lemma, is all that is needed. We begin with some notation.

Let $|x| = \max\{|x_1|, ..., |x_n|\}$ denote the supremum norm or height of the point $x = (x_1, ..., x_n)$ in *n*-dimensional Euclidean space \mathbb{R}^n , and denote its Euclidean norm by $|x|_2 = (x_1^2 + \dots + x_n^2)^{1/2}$. Throughout, $\mathbf{q} = (q_1, ..., q_n)$ is a vector in \mathbb{Z}^n , and $\mathbf{q} \cdot x = q_1 x_1 + \dots + q_n x_n$ denotes the usual inner product. For positive numbers *a*, *b*, we use the Vinogradov notation $a \ll b$ and $b \gg a$ if a = O(b). If $a \ll b \ll a$, we write $a \asymp b$. A point $x \in \mathbb{R}^n$ that satisfies

$$\|\mathbf{q}\cdot x\| < |\mathbf{q}|^{-1}$$

for infinitely many $\mathbf{q} \in \mathbb{Z}^n$ is called *v*-approximable (||x|| is the distance of the real number *x* from \mathbb{Z}). Let *M* be an *m*-dimensional manifold in \mathbb{R}^n . The set of *v*-approximable points in the manifold *M* is denoted by $\mathcal{L}_v(M)$. The manifold *M* is called *extremal* if for any v > n, $\mathcal{L}_v(M)$ has Lebesgue measure 0. Equivalently, by Khintchine's transference principle, *M* is extremal if the set $\mathcal{G}_w(M)$ of points $x \in M$ that are simultaneously *w*-approximable (i.e., for which

$$||qx|| < |q|^{-u}$$

for infinitely many $q \in \mathbb{Z}$) is null (i.e., of measure zero) when w > 1/n. Khintchine's theorem implies that the real line is extremal, and the terminology reflects the fact that

Received 24 November 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11J83; Secondary 11J20.

Dickinson supported by Engineering and Physical Sciences Research Council grant number GR/K56407.