ALMOST COMPLEX STRUCTURES ON $S^2 \times S^2$

DUSA MCDUFF

CONTENTS

1.	Introduction	. 135
2.	Main ideas	. 140
	2.1. The effect of increasing λ	. 140
	2.2. Stable maps	. 141
	2.3. Gluing	. 144
	2.4. Moduli spaces and the stratification of \(\psi \)	
3.	The link $\mathcal{L}_{2,0}$ of \mathcal{J}_2 in $\overline{\mathcal{J}}_0$	151
	3.1. Some topology	. 151
	3.2. Structure of the pair $(\mathcal{V}_J, \mathcal{Z}_J)$. 154
	3.3. The projection $\mathcal{V}_J \to \mathcal{J}$. 161
4.	Analytic arguments	. 162
	4.1. Regularity in dimension 4	. 162
	4.2. Gluing	164

1. Introduction. It is well known that every symplectic form on $X = S^2 \times S^2$ is, after multiplication by a suitable constant, symplectomorphic to a product form $\omega^{\lambda} = (1+\lambda)\sigma_1 + \sigma_2$ for some $\lambda \geq 0$, where the 2-form σ_i has total area 1 on the *i*th factor. We are interested in the structure of the space \mathcal{J}^{λ} of all C^{∞} ω^{λ} -compatible, almost complex structures on X. Observe that \mathcal{J}^{λ} itself is always contractible. However, it has a natural stratification that changes as λ passes each integer. The reason for this is that as λ grows, the set of homology classes that can be represented by an ω^{λ} -symplectically embedded 2-sphere changes. Since each such 2-sphere can be parametrized to be J-holomorphic for some $J \in \mathcal{J}^{\lambda}$, there is a corresponding change in the structure of \mathcal{J}^{λ} .

To explain this in more detail, let $A \in H_2(X, \mathbb{Z})$ be the homology class $[S^2 \times \mathrm{pt}]$ and let $F = [\mathrm{pt} \times S^2]$. (The reason for this notation is that we are thinking of X as a fibered space over the first S^2 -factor, so that the smaller sphere F is the fiber.) When $\ell - 1 < \lambda \le \ell$,

$$\omega^{\lambda}(A-kF) > 0 \quad \text{for } 0 \le k \le \ell.$$

Moreover, it is not hard to see that for each such k, there is a map $\rho_k: S^2 \to S^2$ of

Received 13 October 1998.

1991 Mathematics Subject Classification. Primary 53C15.

Author partially supported by National Science Foundation grant number DMS 9704825.