A NEW FORMULA FOR WEIGHT MULTIPLICITIES AND CHARACTERS

SIDDHARTHA SAHI

1. Introduction. The weight multiplicities of a representation of a simple Lie algebra \mathfrak{g} are the dimensions of eigenspaces with respect to a Cartan subalgebra \mathfrak{h}. In this paper, we give a new formula for these multiplicities.

Our formula expresses the multiplicities as sums of positive rational numbers. Thus it is very different from the classical formulas of Freudenthal [F] and Kostant [Ks], which express them as sums of positive and negative integers. It is also quite different from recent formulas due to Lusztig [L1] and Littelmann [Li].

For example, for the multiplicity of the next-to-highest weight in the n-dimensional representation of $\mathfrak{s l}_{2}$, we get the following expression (which sums to 1):

$$
\frac{1}{(1)(2)}+\frac{1}{(2)(3)}+\cdots+\frac{1}{(n-1)(n)}+\frac{1}{n}
$$

The key role in our formula is played by the dual affine Weyl group.
Let V_{0}, (,) be the real Euclidean space spanned by the root system R_{0} of \mathfrak{g}, and let V be the space of affine linear functions on V_{0}. We identify V with $\mathbb{R} \delta \oplus V_{0}$ via the pairing $(r \delta+x, y)=r+(x, y)$ for $r \in \mathbb{R}, x, y \in V_{0}$.

The dual affine root system is $R=\left\{m \delta+\alpha^{\vee} \mid m \in \mathbb{Z}, \alpha \in R_{0}\right\} \subseteq V$, where α^{\vee} means $2 \alpha /(\alpha, \alpha)$ as usual. Fix a positive subsystem $R_{0}^{+} \subseteq R_{0}$ with base $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, and let β be the highest short root. Then a base for R is given by $a_{0}=\delta-\beta^{\vee}$, $a_{1}=\alpha_{1}^{\vee}, \ldots, a_{n}=\alpha_{n}^{\vee}$, and we write s_{i} for the (affine) reflection about the hyperplane $\left\{x \mid\left(a_{i}, x\right)=0\right\} \subseteq V_{0}$.

The dual affine Weyl group is the Coxeter group W generated by s_{0}, \ldots, s_{n}, and the finite Weyl group is the subgroup W_{0} generated by s_{1}, \ldots, s_{n}. For $w \in W$, its length is the length of a reduced (i.e., shortest) expression of w in terms of the s_{i}. The group W acts on the weight lattice P of \mathfrak{g}, and each orbit contains a unique (minuscule) weight from the set

$$
\mathcal{O}:=\left\{\lambda \in P \mid\left(\alpha^{\vee}, \lambda\right)=0 \text { or } 1, \forall \alpha \in R_{0}^{+}\right\} .
$$

Definition. For each λ in P, we define
(1) $\tilde{\lambda}:=\lambda+(1 / 2) \sum_{\alpha \in R_{0}^{+}} \varepsilon_{\left(\alpha^{\vee}, \lambda\right)} \alpha$, where, for $t \in \mathbb{R}, \varepsilon_{t}$ is 1 if $t>0$ and -1 if $t \leq 0 ;$

Received 1 March 1999.
1991 Mathematics Subject Classification. Primary 17B10, 33C50; Secondary 20F55, 20 E46.
Author's work supported by a National Science Foundation grant.

