A NEW FORMULA FOR WEIGHT MULTIPLICITIES AND CHARACTERS

SIDDHARTHA SAHI

1. Introduction. The weight multiplicities of a representation of a simple Lie algebra \mathfrak{g} are the dimensions of eigenspaces with respect to a Cartan subalgebra \mathfrak{h} . In this paper, we give a new formula for these multiplicities.

Our formula expresses the multiplicities as sums of positive rational numbers. Thus it is very different from the classical formulas of Freudenthal [F] and Kostant [Ks], which express them as sums of positive and negative integers. It is also quite different from recent formulas due to Lusztig [L1] and Littelmann [Li].

For example, for the multiplicity of the next-to-highest weight in the *n*-dimensional representation of \mathfrak{sl}_2 , we get the following expression (which sums to 1):

$$\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \dots + \frac{1}{(n-1)(n)} + \frac{1}{n}.$$

The key role in our formula is played by the *dual* affine Weyl group.

Let V_0 , (,) be the real Euclidean space spanned by the root system R_0 of \mathfrak{g} , and let V be the space of affine linear functions on V_0 . We identify V with $\mathbb{R}\delta \oplus V_0$ via the pairing $(r\delta + x, y) = r + (x, y)$ for $r \in \mathbb{R}$, $x, y \in V_0$.

The dual affine root system is $R = \{m\delta + \alpha^{\vee} \mid m \in \mathbb{Z}, \alpha \in R_0\} \subseteq V$, where α^{\vee} means $2\alpha/(\alpha, \alpha)$ as usual. Fix a positive subsystem $R_0^+ \subseteq R_0$ with base $\{\alpha_1, \ldots, \alpha_n\}$, and let β be the highest *short* root. Then a base for R is given by $a_0 = \delta - \beta^{\vee}$, $a_1 = \alpha_1^{\vee}, \ldots, a_n = \alpha_n^{\vee}$, and we write s_i for the (affine) reflection about the hyperplane $\{x \mid (a_i, x) = 0\} \subseteq V_0$.

The dual affine Weyl group is the Coxeter group W generated by s_0, \ldots, s_n , and the finite Weyl group is the subgroup W_0 generated by s_1, \ldots, s_n . For $w \in W$, its *length* is the length of a reduced (i.e., shortest) expression of w in terms of the s_i . The group W acts on the weight lattice P of \mathfrak{g} , and each orbit contains a unique (minuscule) weight from the set

$$\mathbb{O} := \{ \lambda \in P \mid (\alpha^{\vee}, \lambda) = 0 \text{ or } 1, \forall \alpha \in R_0^+ \}.$$

Definition. For each λ in *P*, we define

(1) $\widetilde{\lambda} := \lambda + (1/2) \sum_{\alpha \in R_0^+} \varepsilon_{(\alpha^{\vee}, \lambda)} \alpha$, where, for $t \in \mathbb{R}$, ε_t is 1 if t > 0 and -1 if t < 0;

Received 1 March 1999.

1991 *Mathematics Subject Classification*. Primary 17B10, 33C50; Secondary 20F55, 20E46. Author's work supported by a National Science Foundation grant.

77