CORRECTION TO "DISCRETE FRACTIONAL RADON TRANSFORMS AND QUADRATIC FORMS," DUKE MATH. J. 161 (2012), 69–106

LILLIAN B. PIERCE

This correction acknowledges an error that arose in the paper "Discrete fractional Radon transforms and quadratic forms" [1]. The error occurs in Section 5.2 in the treatment of an error term, and it affects the cases with dimension $k \geq 3$. When treating the Fourier multiplier supported on the major arcs corresponding to the remainder term in the theta function, we bound the Fourier coefficients of the multiplier on the line $\Re(\lambda) = -2/k$. The computation is correct until equation (83), but the summation over $s \leq j/2 - 10$ leads to a final bound in place of (83) of the form $|c_l(E_{\lambda,j}(\theta,\phi))| \leq A2^{j\alpha_k}$, where $\alpha_1 = 1$, $\alpha_2 = 1 + \epsilon$ for any $\epsilon > 0$, and $\alpha_k = 1/2 + k/4$ for $k \geq 3$. As a result, the bound on the line $\Re(\lambda) = -2/k$ that appears in Proposition 6 should instead read

$$\|\mathcal{E}_{\lambda,i} f\|_{\ell^{\infty}} \leq A 2^{j\alpha_k} \|f\|_{\ell^1},$$

for α_k as defined above. As a consequence, for $k \geq 3$, the $(\ell^p, \ell^{p'})$ result of Proposition 6 holds in the more restricted range $k/(2k+2) < \lambda \leq 1$ rather than in the range $2/(k+4) < \lambda \leq 1$ as originally stated. (The conclusion of Proposition 6 is unchanged for k=1,2.) Similarly, since the proof of Proposition 7 calls upon (83), for $k \geq 3$ the conclusion of Proposition 7 also holds in the restricted range $k/(2k+2) < \lambda \leq 1$. (The conclusion of Proposition 7 is unchanged for k=1,2.) Correspondingly, the conclusion of Proposition 3 holds in the range $2/(k+4) < \lambda < 1$ for k=1,2 and the range $k/(2k+2) < \lambda < 1$ for $k \geq 3$. After interpolation, this leads to a corrected version of the main theorem, as follows.

THEOREM 1

Let $\lambda_k = 0$ if k = 1, 2, and let $\lambda_k = k/(2k+2)$ if $k \geq 3$. For any $k \geq 1$ and $\lambda_k < \lambda < 1$, the operator $J_{Q_1,Q_2,\lambda}$ extends to a bounded operator from $\ell^p(\mathbb{Z}^{k+1})$ to $\ell^q(\mathbb{Z}^{k+1})$ if and only if p,q satisfy

- (i) $1/q \le 1/p k(1-\lambda)/(k+2)$,
- (ii) $1/q < \lambda, 1/p > 1 \lambda$.

DUKE MATHEMATICAL JOURNAL

Vol. 162, No. 6, © 2013 DOI 10.1215/00127094-2210146

Received 6 November 2012.

2010 Mathematics Subject Classification. Primary 44A12, 42B20; Secondary 11P55, 11E25.