CORRECTION TO "DISCRETE FRACTIONAL RADON TRANSFORMS AND QUADRATIC FORMS," DUKE MATH. J. 161 (2012), 69-106

LILLIAN B. PIERCE

This correction acknowledges an error that arose in the paper "Discrete fractional Radon transforms and quadratic forms" [1]. The error occurs in Section 5.2 in the treatment of an error term, and it affects the cases with dimension $k \geq 3$. When treating the Fourier multiplier supported on the major arcs corresponding to the remainder term in the theta function, we bound the Fourier coefficients of the multiplier on the line $\mathfrak{R}(\lambda)=-2 / k$. The computation is correct until equation (83), but the summation over $s \leq j / 2-10$ leads to a final bound in place of (83) of the form $\left|c_{l}\left(E_{\lambda, j}(\theta, \phi)\right)\right| \leq$ $A 2^{j \alpha_{k}}$, where $\alpha_{1}=1, \alpha_{2}=1+\epsilon$ for any $\epsilon>0$, and $\alpha_{k}=1 / 2+k / 4$ for $k \geq 3$. As a result, the bound on the line $\mathfrak{R}(\lambda)=-2 / k$ that appears in Proposition 6 should instead read

$$
\left\|\varepsilon_{\lambda, j} f\right\|_{\ell \infty} \leq A 2^{j \alpha_{k}}\|f\|_{\ell 1},
$$

for α_{k} as defined above. As a consequence, for $k \geq 3$, the ($\ell^{p}, \ell^{p^{\prime}}$) result of Proposition 6 holds in the more restricted range $k /(2 k+2)<\lambda \leq 1$ rather than in the range $2 /(k+4)<\lambda \leq 1$ as originally stated. (The conclusion of Proposition 6 is unchanged for $k=1,2$.) Similarly, since the proof of Proposition 7 calls upon (83), for $k \geq 3$ the conclusion of Proposition 7 also holds in the restricted range $k /(2 k+2)<\lambda \leq 1$. (The conclusion of Proposition 7 is unchanged for $k=1,2$.) Correspondingly, the conclusion of Proposition 3 holds in the range $2 /(k+4)<\lambda<1$ for $k=1,2$ and the range $k /(2 k+2)<\lambda<1$ for $k \geq 3$. After interpolation, this leads to a corrected version of the main theorem, as follows.

THEOREM 1

Let $\lambda_{k}=0$ if $k=1,2$, and let $\lambda_{k}=k /(2 k+2)$ if $k \geq 3$. For any $k \geq 1$ and $\lambda_{k}<\lambda<1$, the operator $J_{Q_{1}, Q_{2}, \lambda}$ extends to a bounded operator from $\ell^{p}\left(\mathbb{Z}^{k+1}\right)$ to $\ell^{q}\left(\mathbb{Z}^{k+1}\right)$ if and only if p, q satisfy
(i) $1 / q \leq 1 / p-k(1-\lambda) /(k+2)$,
(ii) $\quad 1 / q<\lambda, 1 / p>1-\lambda$.

DUKE MATHEMATICAL JOURNAL
Vol. 162, No. 6, © 2013 DOI 10.1215/00127094-2210146
Received 6 November 2012.
2010 Mathematics Subject Classification. Primary 44A12, 42B20; Secondary 11P55, 11E25.

