On the index of reducibility of parameter ideals
and Cohen-Macaulayness in a local ring

By

TAKESI KAWASAKI(*)

1. Introduction

Let A be a Noetherian local ring with maximal ideal m and a be an m-primary ideal of A. Then Northcott proved that the number of irreducible components of a, which is called the index of reducibility of a, is equal to the length of $\text{Hom}_A(A/m, A/a)$ [10]. In general, let M be a finitely generated A-module and N be a submodule of M such that M/N has finite length. Then the number of irreducible components of N in M, which is also called the index of reducibility of N in M, is equal to the length of $\text{Hom}_A(A/m, M/N)$. It is well-known that if M is a Cohen-Macaulay A-module of dimension d, then the index of reducibility of a submodule xM of M, where $x = x_1, \ldots, x_d$ is a system of parameters for M, depends only on M, and not on the choice of the system of parameters.

On the other hand, it is known that in a local ring A, if the index of reducibility of any parameter ideal is equal to one, then A is Cohen-Macaulay, and hence Gorenstein [11]. But there are examples of a non-Cohen-Macaulay ring such that the index of reducibility of any parameter ideal is equal to a constant not depending on the choice of the system of parameters [3].

Concerning these results, the following question may be raised:

Let A be a Noetherian local ring such that the index of reducibility of any parameter ideal for A is equal to some constant. What makes A Cohen-Macaulay?

The aim of this paper is to answer this question and to generalize it for modules.

2. Preliminaries

In this section, we state some definitions and recall some facts on a dualizing complex and on a module with finite local cohomologies. Throughout this paper, A denotes a Noetherian local ring with maximal ideal m. Let

(*) The author is partially supported by Grant-Aid for Co-operative Research. Communicated by Prof. K. Ueno, February 25, 1993.